首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Segmented polyurethane dispersions (SPUD) having carboxyl groups in soft segments (SS) or hard segments (HS) were synthesized. Phase, surface, and interface structures of films made from those SPUD were examined by differential scanning calorimeter (DSC), contact angle, and X-ray photoelectron spectroscopy (XPS) measurements. Segmented polyurethanes (SPU) with the same structures as SPUD were also synthesized in the organic solvent system, and the properties and behaviors of these SPU films were compared with the SPUD films. It was indicated by the DSC measurements that the film made from SPUD having carboxyl groups in the soft segments (S-SPUD) had higher crystallinity and crystal growth rate than the film made from SPUD having carboxyl groups in the hard segments (H-SPUD) in spite of steric hindrance. On the other hand, the film made from SPU having carboxyl groups in the hard segments (H-SPU) had higher crystallinity than the film made from SPU having carboxyl groups in the soft segments (S-SPU). Further, the crystal growth rate of SPU was faster than that of SPUD, regardless of the position of carboxyl groups. These results indicated that the phase structure of SPUD film was affected by the phase structure in the dispersion particle. Surface and interface structure of SPUD film was rearranged with a change of the phase structure. But the degree of this change was higher in the surface structure than in the interface structure. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 741–748, 1999  相似文献   

2.
An attempt has been taken to investigate the microstructure and mass transfer properties of polycaprolactone diol (Mn = 2000 g mol–1, PCL 2000)‐based dense segmented polyurethane (SPU) membrane as a function of hard segment (HS) content. Structure of SPUs were investigated by Fourier transform infrared analysis, wide angle X‐ray diffraction, differential scanning calorimetry, dynamic mechanical thermal analysis, and scanning electron microscopy (SEM). On the other hand, mass transfer properties were measured by equilibrium sorption, dynamic sorption, and water vapor permeability measurements. From the experimental results, it was observed that with the increasing HS content in SPU the percentage crystallinity decreases, whereas the glassy state storage modulus increases. α transition temperature of polyurethane copolymers also increases with increasing HS content. SEM micrograph shows the dense surface structure of SPU films. Mass transfer rate of dense polyurethane membranes decreases with increasing HS content. In contrast, hydrophilic segment and soft segment crystal melting could enhance the mass transfer properties. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

3.
In the study, a new approach for synthesizing biomedical segmented polyurethanes (SPUs) based on polyethylene glycol (PEG, Mn = 800), poly(ε-caprolactone-co-D,L-lactide) (PCLA) and aliphatic diurethane diisocyanates with a long uniform hard segment was developed. By the chain extension of a mixture of PEG diol and PCLA diol with diurethane diisocyanates based on inexpensive 1,6-hexanediisocyanate, three SPUs (SPU-I, SPU-II, and SPU-III) with different contents of hydrophilic segments (PEG) and hard segments were obtained. The chemical structures of diurethane diisocyanates, PCLA and SPUs were confirmed by 1H NMR, 13C NMR, FT-IR, HR-TOF-MS, and GPC. The SPU films exhibited similar thermostability, indicating that the hard segment content marginally affects on the thermostability. From the results of differential scanning calorimetry, two glass transition temperatures were observed, suggesting the microphase separation of soft and hard segments. The SPU films exhibited satisfactory mechanical properties with ultimate stress of 17.4–22.3 MPa and strain at break of 890–1060%, and the initial modulus increased with the increasing content of hard segments. In vitro degradation studies indicated that the time of SPU films to become fragments was 22–33 days, and the degradation rate increased with the increasing content of hydrophilic segments in SPU. Hence, the degradation time of SPU films could be controlled by adjusting the PEG content in SPU, which made them good candidates for further biomedical applications. Studies of in vitro drug release were conducted using vitamin B1 as model drugs. Drug-loaded films exhibited a high initial release rate and matrix-controlled release for more than two weeks, thereby demonstrating a promising material for a long-acting controlled release system. Cytotoxicity test of film extracts and cell attachment on the film surface were conducted using L929 mouse fibroblasts, and the results indicated that the SPU films possess excellent cytocompatibility and cell adhesive ability.  相似文献   

4.
以聚丙二醇(PPG)、异佛尔酮二异氰酸酯(IPDI)和含硫扩链剂胱氨酸二甲酯(CDE)为原料,固定摩尔比为1∶3∶2,采用预聚体法制备含硫自修复聚氨酯弹性体(SPU),对SPU进行红外光谱测试、拉曼光谱测试、力学性能和自修复性能测试、划痕修复观察和DSC测试。结果表明,SPU为非晶结构,微相分离程度低;切割50%深度后,通过拉伸强度测试得出其在60℃的自修复效率达到89.8%,原因是动态双硫键的交换反应和分子链的高运动能力(硬段玻璃化转变温度<60℃)。  相似文献   

5.
Design of biocompatible and biodegradable polymer systems for sustained and controlled release of bioactive agents is critical for numerous biomedical applications. Here, we designed, synthesized, and characterized four polyurethane carrier systems for controlled release of model drugs. These polyurethanes are biocompatible and biodegradable because they consist of biocompatible poly(ethylene glycol) or poly(caprolactone diol) as soft segment, linear aliphatic hexamethylene diisocyanate or symmetrical aliphatic cyclic dicyclohexylmethane-4,4′-diisocyanate as hard segment, and biodegradable urethane linkage. They were characterized with Fourier transform infrared spectroscopy, atomic force microscope, and differential scanning calorimetry, whereas their degradation behaviors were investigated in both phosphate buffered saline and enzymatic solutions. By tuning polyurethane segments, different release profiles of hydrophobic and hydrophilic drugs were obtained in the absence and presence of enzymes. Such difference in release profiles was attributed to a complex interplay among structure, hydrophobicity, and degradability of polyurethanes, the size and hydrophobicity of drugs, and drug-polymer interactions. Different drug-polyurethane combinations modulated the distribution and location of the drugs in polymer matrix, thus inducing different drug release mechanisms. Our results highlight an important role of segmental structure of the polyurethane as an engineering tool to control drug release.  相似文献   

6.
Segmented polyurethanes (SPUs) have been designed with controlled hard to soft segment ratios. The confinement effect of the SPU blocks is induced by phase separation of the SPU segments and has been harnessed to selectively control crystallization. Hard segment (HS) concentrations greater than 50 wt.% allowed for the study of morphological changes and mechanical properties associated with confinement of the soft segment (SS). It was observed that crystallization temperature and normalized percent crystallinity were reduced with increasing HS content, creating a largely amorphous PEG SS at ambient temperature. High temperature annealing further confined the SS because the HS had more time to crystallize, which increased confinement. Considerable insight has been gained through the manipulation and characterization of the SS and HS, in an SPU, towards the design of impact absorbing and structural materials.  相似文献   

7.
In this work, four aliphatic chain extenders, hexanediol (HDO), hexane diamine (HDA), cystamine (CY), and cystine dimethyl ester (CDE), were chosen to synthesize four kinds of polyurethane and poly(urethane-urea)s (PUs), respectively. HDO extended polyurethanes, HDA extended poly(urethane-urea), CY extended poly(urethane-urea), and CDE extended poly(urethane-urea) were denoted as OPU, APU, CPU, and SPU, respectively. The effect of chain extender type on microphase structure and performance of four PUs was investigated. Our research showed that mechanical strength increased in the following order: OPU < SPU < CPU < APU, and self-healing performance increased in the opposite direction. This result is attributed to the increasing degree of microphase separation: OPU < SPU < CPU < APU. The optimal sample SPU has not only excellent mechanical properties (tensile strength of 27.1 MPa and elongation at break of 397.7%), but also exhibits superior self-healing performance (self-healing efficiencies of 95.3% and 93.5% based on tensile strength and elongation at break). The moderate degree of microphase separation between the soft segments and the hard segments, the introduction of disulfide bonds and low degree of hydrogen bonding are responsible for preparing a polyurethane or poly(urethane-urea) system with high mechanical strength and excellent self-healing performance simultaneously. This work provides useful information for us to develop self-healing polyurethane or poly(urethane-urea) materials in the future.  相似文献   

8.
An attempt has been made to investigate the effect of the block length of hydrophilic segments on the structure and mass transfer properties of segmented polyurethane (HSPU). Three different block lengths of hydrophilic poly(ethylene glycol) (PEG) segments were used, namely PEG‐200, PEG‐2000 and PEG‐3400, where the numbers indicate the molecular weight of the PEG in g mol?1. The HSPU were characterized using Fourier‐transform infrared (FTIR) spectroscopy, wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and tensile testing. Mass transfer properties were measured by sorption and water vapour flux (WVF) measurements. The control sample polyurethanes without PEG and a sample with PEG‐200 showed amorphous structure and an unclear phase separation as detected by WAXD, DSC and DMTA. There is evidence that the introduction of PEG blocks into the polyurethane matrix aids soft‐segment crystallization. The percentage crystallinity of soft segments was the highest with PEG‐2000 and an increase of PEG block length to 3400 g mol?1 resulted in a decrease in crystallinity. Mechanically, polyurethane without PEG is tough while percentage strain at maximum load increased with increasing block length of PEG. In addition, sorption and WVF increased linearly with increasing PEG block length and with temperature. The permeability of such HSPUs is a function of temperature and showed a good fit to an Arrhenius form. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
To obtain polyurethane micelles with excellent stability as a drug delivery carrier, star‐shaped amphiphilic block polyurethane (SAPU) was successfully synthesized by the ‘arm‐first’ method, using methoxypoly(ethylene glycol) and poly(ε‐caprolactone) diol as soft segments, hexamethylene diisocyanate as hard segments and pentaerythritol as the core. The structure of the SAPU was characterized by Fourier transform infrared spectroscopy, 1H NMR spectroscopy and gel permeation chromatography. The micellization behaviour and micelle properties of SAPU were measured by the pyrene fluorescence probe technique, 1H NMR, SEM and dynamic light scattering. The results indicated that SAPU could self‐assemble to form nanomicelles in aqueous solution and that the micelles showed excellent stability upon dilution and storage. Indometacin as a model drug could be incorporated into SAPU micelles and be released sustainedly. Meanwhile, the hydrophilic segment content and the molecular weight of SAPU had effects on the micelle properties. In addition, SAPU exhibited good cytocompatibility estimated by methylthiazole‐tetrazolium assay. © 2016 Society of Chemical Industry  相似文献   

10.
Hydroxy‐terminated polybutadiene‐based prepolyurethanes and diamine chain extended polyurethane‐ureas were prepared and treated with various organic solvents in the moisture‐cured state in order to modify their ultimate strength. FTIR studies with solvent‐treated polyurethanes and polyurethane‐ureas confirmed that organic solvents penetrated inside the polyurethane hard segments and affected hydrogen bonding. The polar and non‐polar solvents showed different abilities to penetrate into polyurethane hard segments. Solvent treatment after moisture curing increased the tensile strength of these polyurethanes and polyurethane‐ureas with respect to control samples. The stress–strain behaviour of solvent‐treated polyurethane follows the constrained junction model. The change in hard segment crystallinity on solvent treatment has been explained by wide‐angle X‐ray diffraction study. The better orientation in polybutadiene soft segments evidenced from SEM (scanning electron microscopy) pictures is believed to be the main reason behind the improved tensile properties of solvent‐treated polyurethane samples. The effect of solvent treatment, as well as stretching, on the diffusion coefficient of hexane in polyurethanes was investigated. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
以聚四氢呋喃、甲苯二异氰酸酯、二羟甲基丙酸为主要原料合成了WPUD.并采用红外光谱对WPUD分子结构作了表征,同时对分散体的性能进行了测试和分析.结果表明,DMPA用量是影响水分散体性能的主要因素.DMPA影响分散体的形态、稳定性、吸水率、平均粒径.随着DMPA含量的增加,水分散体稳定性提高、吸水率增加.当DMPA的质量分数由0.014%增加到13.57%时,透光率从0.003%提高到88.88%.并研究了聚氨酯硬段和软段的含量对涂膜基本性能的影响,随着硬段含量增加,铅笔硬度有所提高,软段含量增加,柔韧性提高.另外,残留溶剂是影响水分散体稳定性的另一个重要因素,当分散体中残留溶剂含量增加时,稳定性降低.  相似文献   

12.
An attempt has been made to investigate the influence of mixed soft segment on structure and mass transfer properties of segmented polyurethane (SPU). For this purpose polyurethane block copolymer containing soft segment such as polycaprolactone glycol (number‐average molecular weight 3000, PCL 3000), PCL 3000–polypropylene glycol (number‐average molecular weight 3000, PPG 3000), PCL 3000–polytetramethylene glycol (number‐average molecular weight 2900, PTMG 2900), PPG 3000–PTMG 2900, were synthesized using a two‐step or three‐step synthesis process. All the SPUs were modified with the hydrophilic segment, i.e. diol‐terminated poly(ethylene oxide) (number‐average molecular weight 3400, PEG 3400). Fourier‐transform infrared, wide‐angle X‐ray diffraction, differential scanning calorimetry, and dynamic mechanical thermal analysis were used to characterize the polyurethanes. The mass transfer properties were measured by equilibrium sorption and water vapor permeability measurements. Mixed blocks loosen the inter‐chain interaction due to phase mixing which decreases the crystallization of the soft segment in the resulting SPU. The crystallinity of mixed polyol block SPU increases when both polyols are crystallizable in the pure state. Highest loss tan δ value was observed for the sample containing PTMG 2900–PPG 3000 mixed soft segment due to their flexible and phase mixed structure which increases the chain mobility; this sample performed best among all four SPUs in equilibrium water sorption as well as water vapor permeability owing to their loose and nearly amorphous structure. Soft segment crystal melting further enhances the water vapor permeability significantly, which would make the membrane suitable for breathable textiles, packaging and medical applications. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
Various segmented polyurethanes of different soft segment structure with hard segment content of about 50 wt% were prepared from 4,4′‐diphenylmethane diisocyanate (MDI), 1,4‐butanediol and different polyols with a Mn of 2000 by a one‐shot, hand‐cast bulk polymerization method. The polyols used were a poly(tetramethylene ether)glycol, a poly(tetramethylene adipate)glycol, a polycaprolactonediol and two polycarbonatediols. The segmented polyurethanes were characterized by gel permeation chromatography (GPC), UV‐visible spectrometry, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X‐ray diffraction, and their tensile properties and Shore A hardness were determined. The DSC and DMA data indicate that the miscibility between the soft segments and the hard segments of the segmented polyurethanes is dependent on the type of the soft segment, and follows the order: polycarbonate segments > polyester segments > polyether segments. The miscibility between the soft segments and the hard segments plays an important role in determining the transparency of the segmented polyurethanes. As the miscibility increases, the transparency of the segmented polyurethanes increases accordingly. The segmented polyurethanes exhibit high elongation and show ductile behavior. The tensile properties are also affected by the type of the soft segment to some extent. POLYM. ENG. SCI., 47:695–701, 2007. © 2007 Society of Plastics Engineers.  相似文献   

14.
To illustrate the importance of cationic groups within hard segments on shape memory effect in segmented polyurethane (PU) cationomers, the shape memory polyurethane (SMPU) cationomers composed of poly(ε‐caprolactone) (PCL), 4,4′‐diphenylmethane diisocyanate (MDI), 1,4‐butanediol (BDO), and N‐methyldiethanolamine (NMDA) or N,N‐bis(2‐hydroxyethyl)isonicotinamide (BIN) were synthesized. The comparison of shape memory effect between NMDA series and BIN series was made. The relations between the structure and shape memory effect of the two series of cationomers with various ionic group contents were investigated. It is observed that the stress at 100% elongation is reduced for these two series of PU cationomers with increasing ionic group content. Especially for NMDA series, the stress reduction is more significant. The fixity ratio and recovery ratio of the NMDA series can be improved simultaneously by the insertion of cationic groups within hard segments, but not for the BIN series. Characterizations with DSC and DMA suggest that the crystallibility of soft segment in SMPU cationomers was enhanced by incorporation of ionic groups into hard segments, leading to a relative high degree of soft segment crystallization; compared with the corresponding nonionomers, incorporation of charged ionic groups within hard segments can enhance the cohesion force among hard segments particularly at high ionic group content. This methodology offers good control of the shape memory characteristic in thin films and is believed to be beneficial to the shape memory textile industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 545–556, 2007  相似文献   

15.
Polyurethane elastomers (PU) have been synthesized from polytetramethylene glycol 2000 (PTMG 2000); 4, 4′‐diphenylmethane diisocyanate (MDI) and 1, 4‐butanediol (BD) as chain extender. This synthesis has been done in two steps known as prepolymer methods. The concentration of soft segments and hydrogen attachment in the matrices, have been studied. The results show that the glass transition of the soft segment Tg(s) do not take any changes with the concentration of the soft segment in the matrices. Although, the glass transition temperature of the hard segment Tg(H) increases when the concentration of the hard segment increases in the matrices. In general, the properties of the polyurethane elastomers depend on the extenders nature, the synthesis methods, phase segregation etc. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Nanocomposites of the segmented polyurethane (SPU) elastomer with different concentrations of multiwall carbon nanotubes (MWCNTs) have been prepared. Scanning electron microscopy has been used to visualize the surface morphology and distribution of the nanotubes inside the matrix. Differential scanning calorimetry has been utilized to investigate the effects of MWCNTs on the crystallization characteristics of the SPU by collecting data at four cooling rates namely 5, 10, 15, and 20°C/min in the temperature range between 200°C to ambient. The results reveal that MWCNTs act as effective nucleating agent for crystallization of the hard segment of SPU and advance the onset and peak temperatures of crystallization by 38 and 23°C, respectively. The associated enthalpy and extent of crystallization are also increased by 34%. Different crystallization kinetic parameters have been calculated using both modified Avrami and combined Ozawa‐Avrami models to suggest a three dimensional growth of crystallization of SPU and its nanocomposites. The activation energy has been calculated using Kissinger method, which indicates that activation energy decreases with increasing concentration of MWCNTs. The calorimetric results have further been correlated with thermomechanical analysis and glass transition temperature of the nanocomposites corresponding to soft segment is found to increase by 20°C. POLYM. ENG. SCI., 56:1248–1258, 2016. © 2016 Society of Plastics Engineers  相似文献   

17.
This article investigated thermal transition and morphology utilizing differential scanning calorimetry (DSC), which was performed on silicon‐containing and phosphorus‐containing segmented polyurethane (Si‐PU and P‐PU). The hard segments of those Si‐PU and P‐PU polymers investigated consisted of 4,4′‐diphenylmethane diisocyanate (MDI) and diphenylsilanediol (DSiD), MDI, and methylphosponic (MPA), respectively. The soft segment of those polymers comprised polytetramethylene ether glycol, with an average molecular weight of 1000 or 2000 (PTMG 1000 and PTMG 2000, respectively). Several thermal transitions appeared for on the Si‐PU and P‐PU polymers, reflecting both the soft‐segment and hard‐segment phases. The Si‐PU and P‐PU polymers with a lower hard‐segment content exhibited a high degree of phase separating as indicated by the constancy of both the soft‐segment glass transition temperature (Tgs) and the breadth of transition zone (ΔB). The polymers in which PTMG 2000 was used as the soft segment generally exhibited a crystalline melting endotherm about 10°C, while crystallization usually disappeared upon melt quenching. The hard segments of the Si‐PU and P‐PU polymers displayed multiple endotherms. The first endotherm was related to a short‐range ordering of the hard segment domain (Region I), and the second endotherm was ascribed to a long‐range ordering of the domain (Region II). The wide‐angle X‐ray demonstrated that the structure in Region I and Region II was almost completely amorphous. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3489–3501, 2001  相似文献   

18.
合成工艺对木器涂料用水性聚氨酯性能的影响   总被引:1,自引:0,他引:1  
考察了不同合成工艺对涂膜性能的影响,结果表明:通过合成2种相对分子质量、柔顺性不同的聚酯,进而合成具有高交联度的硬聚氨酯(HPU)和线性软聚氨酯(SPU),并在扩链阶段实现共聚,制备的水性聚氨酯(WPU)的涂膜具有优良的耐干热性、硬度、耐介质性和低温成膜性,成膜助剂用量少,硬度上升快,适合木器装修。  相似文献   

19.
In the present study, polyurethane/clay nanocomposite films have been prepared by solvent casting method. Antiseptic drug chlorhexidine acetate was intercalated into montmorillonite clay and then incorporated into the polyurethane film. For comparison, the drug was also added directly into the polymeric dope used for film casting. In addition to that, nanofibrous web containing neat drug and drug loaded clay were fabricated using electrospinning technique. The emphasis of the study was on investigating the effect of drug intercalated into nanoclay vis‐à‐vis direct drug loading in the polymer on the drug release behaviour of polyurethane nanocomposite films as well as nanofibrous webs. The effect of morphology (film vs. nanofibrous web) on the drug release kinetics has also been discussed. It is observed that the nanoclay is acting as a sustained release carrier of drug, and nanofibrous web exhibits higher drug release rate as compared to the film. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40824.  相似文献   

20.
Novel thermoplastic polyurethane (TPU) elastomers based on copolyether (tetrahydrofuran ethylene oxide) as soft segments, isophorone diisocyanate and 1,4‐butanediol as hard segments were synthesized for the purpose of using as propellant binders. In order to increase the miscibility of thermoplastic polyurethane elastomers with nitrate ester, polyethylene glycol (PEG) is incorporated in the co‐polyether (tetrahydrofuran ethylene oxide) as soft segment. When the molecular weight and content of polyethylene glycol are controlled to 4000 and 6% of soft segments, respectively, the properties of thermoplastic polyurethane elastomers are most perfect. If plasticizing ratio of nitrate ester to thermoplastic polyurethane elastomers exceeds 4 no crystallinities are determined at room temperature. The propellant samples were prepared by a conventional absorption‐rolling extrusion process and the mechanical and combustion properties evaluated afterwards. The maximum impulse reaches up to 265∼270 s which is a little bit higher than that of a HTPB propellant. The measured results reveal a promising TPE propellant candidate which shows good processing temperature (<393 K) and excellent mechanical properties. An attracting feature which can be pointed out is that the burning rate pressure exponent reaches as low as 0.36 without the addition of burning rate catalysts. This enables an easy control of propellant combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号