首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Applied Thermal Engineering》2001,21(17):1755-1768
The effects of inlet spray and operating parameters on penetration and vaporization histories of fuel droplets of a liquid fuel spray injected into a turbulent swirling flow of air through a typical can type gas turbine combustor, have been evaluated from numerical solutions of the conservation equations in gas and droplet phases. The computational scheme is based on the typical stochastic separated flow model of the gas-droplet flow within the combustor. A κε model with wall function treatment for near wall region has been adopted for the solution of conservative equations in gas phase. The initial spray parameters are specified by a suitable PDF size distribution and a given spray cone angle. It has been recognized that the penetration of vaporizing droplets is reduced with an increase in inlet air swirl and spray cone angle. An increase in inlet air pressure or a decrease in inlet air temperature also results in a reduction in droplet penetration. The inlet air pressure and spray cone angle are found to be the most influencing parameters in this regard.  相似文献   

2.
Spray characteristics like mean drop diameter and spray cone angle play an important role in the process of combustion within a gas turbine combustor. In order to study their effects on wall and exit temperature distributions and combustion efficiency in the combustor, a numerical model of a typical diffusion controlled spray combustion in a can‐type gas turbine combustion chamber has been made. A simple kϵ model with wall function treatment for near‐wall region has been adopted for the solution of conservation equations in carrier phase. The initial spray parameters are specified by a suitable PDF for size distribution and a given spray cone angle. A radiation model for the gas phase, based on modified first order moment method, and in consideration of the gas phase as a grey absorbing–emitting medium, has been adopted in the analysis. It has been recognized that an increase in mean drop diameter improves the pattern factor. However, the combustion efficiency attains its maximum at an optimum value of the mean diameter. Higher spray cone angle increases the combustion efficiency and improves the pattern factor, but at the same time, increases the wall temperature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The spray combustion characteristics of coconut (CME), palm (PME) and soybean (SME) biodiesels/methyl esters were compared with diesel by using an axial swirl flame burner. Atomisation of the liquid fuels was achieved via an airblast-type nozzle with varied atomising air-to-liquid ratios (ALR) of 2–2.5. The fully developed sprays were mixed with strongly swirled air to form combustible mixtures prior to igniting at the burner outlet. Under fuel-lean condition, biodiesel spray flames exhibited bluish flame core without the yellowish sooty flame brush, indicating low sooting tendency as compared to baseline diesel. Increasing the atomising air led to the reduction of flame length but increase in flame intensity. Measurements of post-combustion emissions show that SME produced higher NO as compared to CME and PME due to higher degree of unsaturation, while the most saturated CME showed the lowest NO and CO emissions amongst the biodiesels tested across all equivalence ratios. By preheating the main swirl air to 250 °C, higher emissions of NO, CO and CO2 were observed for biodiesels. Higher ALR led to reduced NO and CO emissions regardless of the fuel used, making it a viable strategy to resolve the simultaneous NOCO reduction conundrum. This work shows that despite different emission characteristics exhibited by biodiesels produced from different feedstock, they are in principle potential supplemental fuels for practical combustion systems. The pollutants emitted can be mitigated by operating at higher ALR in a twin-fluid based swirl combustor.  相似文献   

4.
本文采用高速摄影,利用激光衰减法,研究了小型直喷式柴油机缸内燃油雾特民生,特别是在缸内空气运动对燃油喷雾特性影响方面,进行了比较详细的研究,研究结果表明,在柴油机狭小的燃烧室内,自由喷雾得不到充分发展便得快与燃烧室壁面发生碰撞,故油束的锥角比较小,燃油的密集程度比较高,受空气涡流吹拂而发生弯曲的程度很小,较强的空气涡流会降低喷雾的贯穿速度。  相似文献   

5.
Flow and heat transfer predictions in modern low emission combustors are critical to maintaining the liner wall at reasonable temperatures. This study is the first to focus on a critical issue for combustor design. The objective of this paper is to understand the effect of different swirl angle for a dry low emission (DLE) combustor on flow and heat transfer distributions. This paper provides the effect of fuel nozzle swirl angle on velocity distributions, temperature, and surface heat transfer coefficients. A simple test model is investigated with flow through fuel nozzles without reactive flow. The fuel nozzle angle is varied to obtain different swirl conditions inside the combustor. The effect of flow Reynolds number and swirl number are investigated using FLUENT. Different RANS-based turbulence models are tested to determine the ability of these models to predict the swirling flow. For comparison, different turbulence models such as standard k ? ε, realizable k ? ε, and shear stress transport (SST) k?ω turbulence model were studied for non-reactive flow conditions. The results show that, for a high degree swirl flow, the SST k?ω model can provide more reasonable predictions for recirculation and high velocity gradients. With increasing swirl angle, the average surface heat transfer coefficient increases while the average static temperature will decrease. Preliminary analysis shows that the k?ω model is the best model for predicting swirling flows. Also critical is the effect of the swirling flows on the liner wall heat transfer. The strength and magnitude of the swirl determines the local heat transfer maxima location. This location needs to be cooled more effectively by various cooling schemes.  相似文献   

6.
为解决使用中心浅坑燃烧室的对置活塞发动机燃油湿壁、挤流强度低、燃烧室中心混合气过浓等问题,提出对置活塞发动机侧置燃烧室方案,对侧置ω燃烧室和侧置侧卷流燃烧室性能进行研究。使用侧置燃烧室时气口开闭相位的改变会导致发动机指示功率降低,采用GT-Power建立发动机性能仿真模型,通过改变气口参数解决了由于换气过程差异导致的侧置燃烧室性能下降问题。采用AVL FIRE进行三维仿真分析研究不同燃烧室燃烧性能,优化油束夹角后的仿真结果表明侧置侧卷流燃烧室内燃油在分流造型作用下形成卷流运动和干涉壁射流,向油束之间和缸壁附近的空气未利用区域扩散,缓解了燃油在壁面附近的堆积问题,油气混合更加均匀。侧置侧卷流燃烧室方案相比中心浅坑燃烧室方案和侧置ω燃烧室方案燃烧速率更快,指示功率更高,在对置活塞发动机上应用侧置侧卷流燃烧室对提升发动机性能具有重要意义。  相似文献   

7.
燃气轮机燃烧室的燃烧特性受到旋流强度、雾化特性等因素的强烈影响,旋流强度和雾化特性分析对燃烧室的设计和优化具有非常重要的作用。对燃气轮机燃烧室的燃烧流场,应用商用程序FLUENT进行了数值模拟,并分析了空气过量系数α和燃油雾化粒径对燃烧室内燃烧特性的影响。模拟结果表明,控制空气过量系数和燃油雾化粒径对提高燃烧室工作性能和降低污染物排放具有重要意义。  相似文献   

8.
Supersonic combustion ramjet (scramjet) is a variant of ramjet in which the combustion takes place at supersonic velocity. The flow physics inside the scramjet combustor is quite complex due to the fact that the mixing and completion of the combustion take place in a short time, which is of the order of milliseconds. This study focuses on flow characteristics within the combustion chamber of the scramjet engine that is designed to improve energy efficiency by enhancing combustion efficiency. The effect on combustion performance and thereby the energy efficiency on using strut‐based flame stabilizer is evaluated at different positions. Reynolds averaged Navier‐Stokes equations are solved with the Shear Stress Transport kω turbulence model. Single strut configuration is used to validate with the experimental data. Single strut is then compared with three‐strut configuration. In the three‐strut configuration, the location of the primary strut is kept constant, and the secondary struts are relocated in x and y directions. Combustion performance was evaluated for the cases of flow from primary strut only and through three struts. It was found that the placement of secondary strut in a three‐strut configuration plays a vital role in improving energy efficiency. A maximum of 33.86% improvement in combustion efficiency was observed in comparison to the single strut combustor. A reduction in unburned fuel was observed, making the system more energy efficient. If the struts are not placed optimally, the combustion performance of the combustor was observed to be lower than that of a single‐strut configuration. The shock reflection and expansion fans within the primary combustion zone and the secondary strut region enhance the combustion efficiency. The wall static pressure was observed to increase with the addition of secondary struts. For certain strut configurations, flow separation was seen on the combustor walls. If the secondary strut was placed close to the primary strut, combustion efficiency was found to enhance. It was seen that combustion efficiency was also enhanced for the cases of reacting flow from primary strut only. It could also help to increase fuel efficiency, as additional fuel is not supplied to the secondary strut, making the overall system energy efficient. As the secondary strut is introduced, total pressure loss also increases. It could also be noted that if the combustor length was increased, there could be further increased in combustion efficiency.  相似文献   

9.
A numerical study of the swirl effect on a coaxial jet combustor flame including radiative heat transfer is presented. In this work, the standard k-ε model is applied to investigate the turbulence effect, and the eddy dissipation model (EDM) is used to model combustion. The radiative heat transfer and the properties of gases and soot are considered using a coupled of the finite-volume method (FVM), and the narrow-band based weighted-sum-of-gray gases (WSGG-SNB) model. The results of this work are validated by experiment data. The results clearly show that radiation must be taken into account to obtain good accuracy for turbulent diffusion flame in combustor chamber. Flame is very influenced by the radiation of gases, soot, and combustor wall. However, swirl is an important controlling variable on the combustion characteristics and pollutant formation.  相似文献   

10.
旋流煤粉多相流动与燃烧一维数学模型及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
为了发展和有效地进行旋流煤粉多相流动与燃烧数值模拟,作者在多连续介质模型的框架中建立了综合考虑气-固两相旋流流动,燃烧与传热的旋流煤粉燃烧一维数学模型。应用这一模型对涡旋燃烧炉环形通道内煤粉燃烧和气体燃烧的数值计算表明,该模型可快速有效地用于模拟旋流煤粉多相流动与燃烧过程,给出炉内温度、速度与浓度分布以及燃烧效率等主要参数。  相似文献   

11.
Experiments are performed on continuous detonation combustion of ternary hydrogen–liquid propane–air mixture in a large-scale annular combustor 406 mm in outer diameter with an annular gap of 25 mm. Liquid propane is fed into the combustor at the time when sustained continuous-detonation combustion of hydrogen–air mixture is attained therein. Mass flow rates of hydrogen, propane and air in the experiments ranged from 0.1 to 0.5 kg/s (hydrogen), 0.1 to 0.5 kg/s (propane), and 5 to 12 kg/s (air). Continuous-detonation combustion of liquid propane in air is obtained for the first time due to addition of hydrogen rather than due to enrichment of air with oxygen. Combustor operation with a single continuously rotating detonation wave (DW) for about 0.1 s has been obtained when the flow rates of propane and air remained constant while the flow rate of hydrogen was rapidly decreasing.  相似文献   

12.
采用双成象技术研究了不同进气涡流比时直喷式柴油机喷雾、燃烧和碳粒变化历程。大量的研究结果表明:直喷式柴油机燃烧涡流从缸心向侧壁发展,更接近刚性涡特性。当涡流比高达4.5时,着火瞬间油束之间拥有空气的面积还相当多;涡流比过高,油雾和早、中期的火焰被局限于活塞凹坑内,这导致了气缸内空气利用率降低和燃烧后期碳粒增多。  相似文献   

13.
进气涡流比对直喷式柴油机油束碰壁过程影响的研究   总被引:3,自引:2,他引:3  
本采用高速摄影技术,研究了小型直喷式柴油机缸内空气运动对油束碰壁过程的影响。研究结果表明,在小型直喷式柴油机中,燃油壁面喷射的反溅作用是燃油雾化过程中的重要阶段。油束在碰壁过程中,其锥角及贯穿速度均发生变化。不同的进气涡流强度,壁面油束的形状及其发展速度均不同,顺涡流方向壁面油束的扩展速度较快,随着涡流强度的增加,壁面油束只出现在顺涡流方向。空气涡流对燃油与空气混合的促进作用主要发生在油束与燃烧  相似文献   

14.
Swirling flows have been commonly used for a number of years for the stabilization of high-intensity combustion processes. In general these swirling flows are poorly understood because of their compelexity. This paper describes the recent progress in understanding and using these swirling flows. The main effects of swirl are to improve flame stability as a result of the formation of toroidal recirculation zones and to reduce combustion lengths by producing high rates of entrainment of the ambient fluid and fast mixing, particularly near to the boundaries of recirculation zones. Two main types of swirl combustor can be identified as follows:The Swirl Burner. Here swirling flow exhausts into a furnace or cavity combustion occurs in and just outside the burner exit.The Cyclone Combustion Chamber. Here air is injected tangentially into a large, usually, cylindrical chamber and exhausts through a centrally located exit hole in one end. Combustion mostly occurs inside the cyclone chamber.Initially the isothermal performance of swirl combustors is considered, and it is demonstrated that, contrary to many previous assumptions, the flow is often not axisymmetric but three-dimensional time-dependent. Under most normal nonpremixed combustion conditions, the swirling flow returns to axisymmetry, although there is still a residual presence of the three-dimensionality, particularly on the boundary of the reverse flow zone. Swirl increases considerably the stability limits of most flames; in fact with certain swirl burners, the blow-off limits are virtually infinite. Cyclone combustion chambers have large internal reverse flow zones which provide very long residence times for the fuel/air mixture. They are typically used for the combustion of difficult materials such as poor quality coal or vegetable refuse. In contrast to the swirl burner which usually has one central toroidal, recirculation zone, the cyclone combustor often has up to three concentric toroidal recirculation zones. Sufficient information is also available to indicate that stratified or staged fuel or air entry may be used to minimize noise, hydrocarbon, and NOx emissions from swirl combustors.  相似文献   

15.
涡旋燃烧炉是最近研制的一种新型固体燃料旋风燃烧炉,它采用了多级切向进风的结构。本文应用气固两相流的多连续介质模型及其数值计算方法,针对分级供入炉内的空气采用正反切向进风的条件,对涡旋燃烧炉内的气固两相湍流旋流流动进行了数值模拟。通过模拟结果的分析及其与分级同向切向进风情况的比较,探讨了在涡旋燃烧炉中采用多级正反切向进风方式的可能性。  相似文献   

16.
采用高速摄影技术研究了缸内直喷周向分层(简称DICSC)燃烧系统火花塞附近两根油历史潮流的发展历程。研究结果表明,喷雾混合过程中燃油碰壁、反弹现象非常明显,大多数燃油的雾化与蒸发产生于油束碰壁以后。靠近壁面处燃油浓度最大,向燃烧室中心方向浓度逐渐降低,沿周向、顺涡流方向形成了明显的由浓到稀的分层。因而,为了保证较好的着火稳定性,在DICSC燃烧系统中火花塞靠近壁面布置并处于油束下游一定角度比较合适,此外有浓度合适、易于点燃的混合气以便火焰能够顺利扩展。另外,还研究了不同涡流比和油束夹角下的油束发展历程。  相似文献   

17.
在CH4与空气的化学当量比为0.7、空气量为25 m/s时进行了旋流燃烧器热声振动试验.分析了不同中心风量下旋流燃烧的热声不稳定特性.结果表明:在中心风量为10%时,旋流核心区明显受到中心射流的影响,热声振动振幅明显下降,最大峰值脉动压力下降216 Pa;中心射流对热声振动的影响存在一个阈值,提高射流速度可使中心射流作用于旋流核心区,从而影响燃烧与声波的耦合,以实现对热声振动的被动控制.  相似文献   

18.
The effect of hydrogen addition in methane-air premixed flames has been examined from a swirl-stabilized combustor under confined conditions. The effect of hydrogen addition in methane-air flame has been examined over a range of conditions using a laboratory-scale premixed combustor operated at 5.81 kW. Different swirlers have been investigated to identify the role of swirl strength to the incoming mixture. The flame stability was examined for the effect of amount of hydrogen addition, combustion air flow rates and swirl strengths. This was carried out by comparing adiabatic flame temperatures at the lean flame limit. The combustion characteristics of hydrogen-enriched methane flames at constant heat load but different swirl strengths have been examined using particle image velocimetry (PIV), micro-thermocouples and OH chemiluminescence diagnostics that provided information on velocity, thermal field, and combustion generated OH species concentration in the flame, respectively. Gas analyzer was used to obtain NOx and CO concentration at the combustor exit. The results show that the lean stability limit is extended by hydrogen addition. The stability limit can reduce at higher swirl intensity to the fuel-air mixture operating at lower adiabatic flame temperatures. The addition of hydrogen increases the NOx emission; however, this effect can be reduced by increasing either the excess air or swirl intensity. The emissions of NOx and CO from the premixed flame were also compared with a diffusion flame type combustor. The NOx emissions of hydrogen-enriched methane premixed flame were found to be lower than the corresponding diffusion flame under same operating conditions for the fuel-lean case.  相似文献   

19.
建立了采用分级进风方式的旋流燃烧室实验装置。在此实验装置上分别对天然气进行了湍流旋流燃烧的实验研究。在保持过量空气系数不变的条件下,测量了在不同外二次风旋流数下,燃烧室内烟气的时均温度场,O2,CO2,CO和NO浓度场的分布。由实验结果分析讨论了二次风旋流数对旋流燃烧室内湍流燃烧及NOx生成的影响。  相似文献   

20.
In recent years, gas mixtures are being used as alternative fuels in combustors. These gas mixtures are obtained by different methods. For instance, coal gasification and carbonization as coal have the largest reserves among fossil fuels. Gas mixtures obtained via coal gasification and carbonization are called water gas, generator gas, town gas and coke oven gas. These fuels contain various gases. As a result of this, heating values of fuels are also different. Therefore, combustion performances and emission characteristics of these fuels need to be investigated. In this study, combustion performances and emissions including CO, CO2 and NOX of water gas, generator gas, town gases, coke oven gas and methane were numerically investigated in a model gas turbine combustor. The numerical modelling of turbulent nonpremixed diffusion flames has been performed in this combustor. Mathematical models used in this study involved the k–ε model of turbulent flow, the PDF/mixture fraction model of nonpremixed combustion and P‐1 radiation model. A CFD code ANSYS Fluent was used for all numerical investigations. Temperature distributions of axial and radial directions were determined. A NOX post‐processor was used for the prediction of NOX emissions from the gas turbine combustor. Modelling was performed for 60 kW thermal power and different equivalance ratios (i.e. Ф = 0.91, Ф = 0.77 and Ф = 0.67). The studied type 1 model gas turbine combustor was modelled for Ф = 0.91 equivalance ratio. Then, Other equivalance ratios were analysed for type 2 model gas turbine combustor. The effect of dilution air on combustion performances and emission characteristics was also investigated. It is concluded that the coke oven gas, the town gas I, town gas II and the water gas are appropriate for usage as alternative fuel, whereas the generator gas is not suitable for gas turbine combustors. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号