共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
利用CO2激光对50CrNiMoVA超高强度合金带钢和W2Mo9Cr4VCo8高速钢扁丝构成的双金属带锯条进行了对接焊。分析讨论了激光束与对接缝的相对偏移量对焊缝成形的影响,通过金相实验、显微硬度实验和弯曲实验,对焊接接头的显微组织、显微硬度及韧性进行了分析,并讨论了焊后热处理对焊接接头组织、硬度及抗弯性能的影响。在不加过渡层情况下,得到成形平滑、无明显外观缺陷的异种金属焊缝,焊后经过1190 ℃分级淬火和560 ℃,2 h的3次回火热处理工艺,使得双金属带锯条的CO2激光焊缝经90°折弯而不发生开裂,其性能达到工业应用水平。 相似文献
3.
结合光学多通道分析仪和高速摄像仪的观测结果,对6061铝合金CO2激光深熔焊接过程中等离子体的热力学行为进行了研究。分析了稳定的激光焊接过程初始阶段和焊接过程中及焊接过程不稳定时的等离子体热力学行为。实验结果表明,激光深熔焊接在初始阶段,等离子体的电子温度和离子温度偏离较大,并逐渐趋于平衡,温度梯度也逐渐变小;在稳定的焊接过程中激光功率的增加对等离子体的温度影响较小,等离子体尺寸变化对焊缝截面有重要的影响;等离子体温度急剧增加时,小孔内气压的剧增会引起等离子体上下起伏,使焊接过程中断或产生气体,而等离子体尺寸大小的波动则会影响焊缝成形。 相似文献
4.
5.
焊接过程中产生的等离子体是激光深熔焊的固有现象,它通过对激光能量的吸收、折射、反射等降低到达小孔的激光能量密度,影响激光与工件相互作用。使用微距高速摄影系统,研究了大功率CO2激光焊接不同功率和不同侧吹气体流量下等离子体的形态和尺寸的变化规律。在相同条件下,激光功率越大,等离子体的尺寸越大,而且越不稳定,容易出现激光维持的燃烧(LSC)波,严重影响焊接过程的稳定性。而通过增加侧吹气体的流量,可以有效抑制LSC波的产生,并且减小等离子体的尺寸,增加焊缝熔深。 相似文献
6.
为了研究脉冲CO2激光诱导空气放电的特性,建立了高压电容充放电实验平台,采用间距为8mm、半径为10mm的一对球形石墨电极,取得了放电电压和电流的实时数据,采用2阶振荡电路模型对放电电压和放电电流进行拟合得到了电极间激光诱导放电等离子体的阻抗,并对放电时间、放电延时及抖动做了统计。结果表明,激光诱导放电等离子体的阻抗很小,约1Ω~2Ω,拟合得到的放电等离子体阻抗随放电电压、放电电容、以及激光能量的增加而减小;放电延时随着实验条件的变化在2μs~10μs之间变化,放电延时以及延时抖动随着放电电压和激光能量的增加而降低,而受放电电容大小的影响不明显。由此高稳定性的激光脉冲和高压有助于激光诱导放电过程的稳定。 相似文献
7.
采用20 kW CO2激光器对不锈钢厚板进行了焊接实验研究。发现激光束焦点位置在高功率输出时存在漂移,为简便地描述焊接位置,以聚焦镜中心与材料表面的距离h作为焊接位置的表征,研究了不同h时的焊缝成形及熔深变化情况。此外,万瓦级激光焊接对聚焦系统更加敏感,在聚焦镜焦距f=300 mm时不同焊接位置处的焊缝成形差别小,且熔深浅,深宽比小;在f=200 mm时不同焊接位置处焊缝成形变化明显。采用f=200 mm聚焦系统,在h=208 mm、激光功率P=18 kW、焊速v=2 m/min时对12 mm厚1Cr18Ni9Ti实现了对接单道焊透,焊缝成形良好。结果表明:通过优化工艺参数,在不开坡口和未填充材料的情况下,采用20 kW CO2激光器可以实现12 mm不锈钢厚板的对接焊,焊缝成形良好、深宽比大、热影响区小,得到了较为理想的焊接接头。 相似文献
8.
利用小功率40kHz的CO2脉冲激光对25μm厚的超薄熔石英玻璃与熔石英毛细管端面进行热熔焊接,研究和分析了占空比(脉冲激光功率)、离焦激光预热、离焦激光退火对熔石英玻璃热熔焊接的影响。结果表明,实现超薄熔石英玻璃与毛细管端面无气化穿孔、密封、牢固焊接的占空比为37%;占空比为20%的+2mm离焦脉冲激光预热对超薄熔石英玻璃无裂纹/裂缝的焊接起到了关键作用;适当占空比的-2mm离焦脉冲激光退火能够释放超薄熔石英玻璃在热熔焊接过程中产生的残余热应力,提高熔石英器件的性能,经激光焊接的光纤法布里-珀罗传感器的压力和温度曲线的线性度分别为0.9995和0.9991,而且重复性好。 相似文献
9.
10.
为了研究高能脉冲CO2激光诱导空气等离子体放电通道的特性,建立了高压电容充放电实验平台,激光束经离轴抛物聚焦镜汇聚,引发间距可调的盘状电极和针状电极之间的等离子体放电通道。利用电气参量测量、发射光谱测量等手段,分析了等离子体放电通道的启动特性、阻抗特性和等离子体密度。结果表明,激光束与放电方向同轴的结构以及较大的脉冲能量,使得激光诱导等离子体放电通道的启动时间大幅缩短,50mm间距的等离子体通道,启动时间约为2μs;激光诱导等离子体放电通道的阻抗很小,约1Ω~2Ω,并且阻抗值随放电电压的增加有减小的趋势,而与等离子体通道长度的关系不明显;由谱线的Stark展宽计算获得的空气击穿之后、放电启动之前的等离子体电子密度约为1019cm-3,尽管放电启动时等离子体辐射显著增强,但等离子体密度近乎单调下降。这些结果将有利于高能脉冲CO2激光诱导空气等离子体放电通道的应用研究。 相似文献
11.
CO2激光焊接等离子体高速摄影照片图像处理 总被引:3,自引:0,他引:3
本文讨论了采用计算机处理激光焊接等离子体的高速摄影照片。等离子体面积计算采用象素,并以象素的个数来表示,给出了等离子面积分布的直方图;给出了基于灰度的等温线;分析了将激光焊接等离子体分为具有10个不同折射率的区域时对入射激光传输的影响,结果表明:等离子体使入射激光发散,呈现出负透镜效应,严重情况下甚至使焊接不能进行。 相似文献
12.
辅助气体对CO_2激光焊接光致等离子体屏蔽的影响 总被引:7,自引:2,他引:7
采用20kWCO2激光加工系统焊接低碳钢,研究了辅助气体对等离子体屏蔽临界功率密度的影响。研究结果表明,辅助气体不同时等离子体屏蔽临界功率密度由小到大的排列顺序为:Ar→N2→CO2→He。Ar作为辅助气体时,等离子体屏蔽的临界功率密度可以低至1.85×106W/cm2。辅助气体对等离子体屏蔽临界功率密度的影响主要取决于气体的导热性和解离能,相比而言,气体电离能的影响是次要的。采用Ar作为辅助气体时,等离子体屏蔽临界功率密度低的原因主要在于Ar的导热性能差,激光支持的燃烧波(Laser-supportedCombustionWaves—LSC)波容易过热和扩展。 相似文献
13.
14.
CO_2激光深熔焊接光致等离子体控制的研究 总被引:1,自引:0,他引:1
采用2.5kWCO2激光器焊接不锈钢,设计一个由两个同轴圆管组成的双层喷嘴,研究了Ar和He的组合方式、流量、喷嘴角度等对光致等离子体控制效果的影响。当内管通Ar,外管通He且喷嘴角度大于45°时可将等离子体完全抑制在蒸发沟槽之内,从而获得具有大的熔深和深宽比的焊缝。控制等离子体所需的He气流量与焊接速度有关,焊接速度增加,He气流量减小 相似文献
15.
16.
保护气流对CO2激光焊接铝合金的影响 总被引:5,自引:5,他引:5
利用3 kW高功率CO2激光器,通过改变保护气体流量和流动方向,对2 mm厚的A5083铝合金薄板进行了焊接实验研究.研究发现,小孔的稳定存在取决于保护气体对等离子体云的抑制效果,而侧吹保护气体对等离子体云的抑制效果主要取决于所形成的气流方向,从而影响焊接熔化特性.利用有限元法对激光焊接时保护气体在小孔内部和表面气流状况进行了数值模拟,通过对不同焊接条件下模拟形成的小孔气动扰流的气流场和压力分布云图的分析,解释了采用逆向侧吹保护气体吹除等离子体的方法,可以更有效地抑制等离子体云的产生,防止小孔塌陷,有利于维持小孔的稳定性. 相似文献
17.
采用Level-set方法模拟了激光深熔焊接过程中光致等离子体的动态形成过程, 研究了等离子体形态、温度、孔内压强、气体流速等行为特征。结果表明: 在2.2 ms时刻等离子体的最高温度达到4 300 K,孔内的最大压强为4×105 Pa, 等离子体在小孔径向的最大流速为60 m/s, 最大流速位于等离子体中心处且接近孔底的位置, 且等离子体沿小孔轴线方向与径向方向的流速下降。考虑等离子体对激光能量吸收比未考虑等离子体对激光能量吸收时孔内功率密度降低了12.5%。研究结果将为激光深熔焊接过程中等离子体的机理研究和模拟研究提供理论依据。 相似文献