首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
为改善丁羟聚氨酯弹性体的力学性能,采用互穿聚合物网络改性技术,将改性超支化聚酯引入丁羟聚氨酯体系,形成互穿聚合物网络.结果表明,超支化聚酯/丁羟聚氨酯互穿聚合物网络的最大拉伸强度和延伸率比单一丁羟聚氨酯网络提高了3倍以上.利用衰减全反射傅立叶变换红外光谱(ATR-FTIR)和透射电镜分析互穿聚合物网络的化学结构和微相结构,以确定超支化聚合物对丁羟聚氨酯的增强增韧机理.认为互穿聚合物网络之间形成氢键以及微相分离是互穿网络力学性能提高的原因.当分散相粒径为1 μm时,力学性能达到最优.  相似文献   

2.
以端磺酰氧基超支化聚酯为前驱体,在二甲基亚砜中与叠氮化钠反应,端磺酰氧基被叠氮基所取代,制备得到端叠氮基超支化聚酯。在此基础上,对端叠氮基超支化聚酯的合成反应进行了优化,结果表明:该合成反应的最优条件为以二甲基亚砜为反应介质,反应温度95℃,反应时间24h,叠氮化钠加入量为化学反应量的1.5倍,催化剂四丁基溴化铵加入量为叠氮化钠物质的量的5.0%;在此条件下,99.8%的端磺酰氧基被叠氮基所取代。  相似文献   

3.
高低温循环下HTPB推进剂力学性能规律研究   总被引:2,自引:0,他引:2  
为了获得高低温循环下HTPB推进剂的力学性能变化情况,通过高低温循环实验(又称温度渐变实验)和单向拉伸实验,对HTPB推进剂高低温循环力学性能规律进行了研究.实验结果表明:高低温循环下HTPB推进剂的最大抗拉强度和最大延伸率都随着循环周期数的增加而降低,这与热氧老化下的力学性能变化规律不同.最后,运用灰色理论预测了该实验条件下HTPB推进剂失效时的高低温循环周期数.  相似文献   

4.
高固体含量丁羟推进剂性能研究   总被引:1,自引:2,他引:1       下载免费PDF全文
为进一步提高HTPB推进剂的能量水平,从理论和实验两个方面研究了固体组分含量对HTPB推进剂的能量性能、燃烧性能和力学性能的影响。结果表明,随固体含量的增加,推进剂理论比冲增加,当固体含量为90%(高氯酸铵37%、黑索今36.6%、铝粉17.4%)时,其理论比冲可达270.62s;高氯酸铵43%、黑索今30%、铝粉17%时,燃速压力指数约为0.34,-40℃时的最大延伸率为48%。当固体含量为88%(高氯酸铵48%、黑索今23%、铝粉17%)时,调节HTPB推进剂配方填料粒度及级配,燃速可从7.0MPa下的7.0mm·s-1提高至10.9mm·s-1,燃速压力指数相当(约为0.4),20℃时的最大延伸率可达74%。  相似文献   

5.
石蜡/HTPB燃料的力学性能   总被引:1,自引:0,他引:1  
王印  王飞  胡松启  刘林林  刘辉 《含能材料》2019,27(5):398-403
为了研究端羟基聚丁二烯(HTPB)体系质量分数以及温度对石蜡/HTPB燃料力学性能的影响,制备了7种不同配方石蜡/HTPB拉伸试件,并使用万能材料试验机以10 mm·min~(-1)拉伸速率进行了单轴拉伸实验,分析了燃料的最大抗拉强度、断裂伸长率和初始弹性模量变化规律。结果表明,随着HTPB体系质量分数增加,燃料的断裂伸长率增大,而最大抗拉强度和初始弹性模量皆减小;当环境温度较高(接近石蜡熔点58℃)时,燃料的最大抗拉强度和初始弹性模量皆随着HTPB质量分数增加而增大;燃料的最大抗拉强度随温度降低而逐渐增大,其中当温度由20℃降低至-40℃时,H20燃料最大抗拉强度由1.189 MPa升高至2.150 MPa;以HTPB体系为基体、石蜡为填料的石蜡/HTPB燃料,在其基体与填料的界面上存在相互阻滞作用力,可提高燃料的力学性能。  相似文献   

6.
RDX粒径和表面能对HTPB推进剂力学性能的影响   总被引:4,自引:2,他引:2  
杜美娜  罗运军 《含能材料》2008,16(4):441-445
采用Washburn薄层毛细渗透技术测定了符合军标的六个不同级别RDX的表面能及其分量。选用非极性的二碘甲烷和1-溴萘作为测定不同级别RDX表面能色散分量的探针液体,极性的乙二醇和甲酰胺作为测定不同级别RDX表面能极性分量和酸、碱分量的探针液体。研究发现,随着粒径的增大,RDX的总表面能略微增大。制备固含量为15%的RDX/HTPB/IPDI推进剂胶片,研究了RDX的粒径和表面能对HTPB推进剂力学性能的影响。结果表明,含有相同固含量的不同级别RDX的HTPB推进剂胶片的最大应力与单个RDX粒子的界面粘附能呈指数衰减函数,即y=0.5242 0.6973exp(-1.161Wadh0)。  相似文献   

7.
为揭示机械载荷作用下HTPB推进剂的力学性能变化规律和破坏机理,利用单向拉伸法研究了应变率和加载方式对HTPB推进剂力学性能的影响,并基于耗散能方法分析了其在机械载荷作用下的耗散特性。结果表明,推进剂力学性能有明显的应变率相关性,抗拉强度、伸长率等与应变率的对数成线性增加关系;不同的应变控制也影响推进剂的力学性能;应变率和应变控制对推进剂试件的耗散能有较大的影响,耗散能与应变率的对数也成线性关系。  相似文献   

8.
在综述国内外研究进展的基础上,研究了HTPB分子量、不同固化剂种类、对HTPB基聚氨酯力学性能的影响,并采用添加扩链剂的方法聚氨酯进行改性研究,考查了扩链剂种类和用量对聚氨酯力学性能的影响.  相似文献   

9.
HTPE推进剂研究进展   总被引:9,自引:5,他引:4  
综述了端羟基聚醚(HTPE)推进剂近年来的研究进展.介绍了HTPE黏合剂的研制与生产,对比了HTPE推进剂与HTPB推进剂,并对HTPE推进剂的老化性能以及对其钝感性能的改进进行了说明.由于其显著的钝感性能和优异的力学性能,HTPE推进剂将替代HTPB推进剂.  相似文献   

10.
张光普  罗运军 《含能材料》2021,29(11):1039-1048
以3,3-二(氯甲基)氧杂环丁烷(BCMO)和3-乙基-3-氧杂丁环甲醇(EHO)为原料,通过调节单体BCMO、EHO混合摩尔比m,再经阳离子开环聚合和叠氮化反应制备了一系列叠氮超支化共聚物(r-POB-m).采用红外光谱(FTIR)、核磁共振(NMR)、凝胶渗透色谱(GPC)和元素分析等对其结构进行了表征,结果表明该共聚物具有高分子量(>4400 g?mol-1)、高含氮量(达到43%)且支化度可控.采用X射线衍射仪(XRD)、哈克流变仪及差示扫描量热仪(DSC)分别对其结晶性、黏度和化学相容性进行了测试,结果表明当m=4时,r-POB-4为无定形态且工艺黏度最低,同时与推进剂主要组分相容性良好,适合作为增塑剂.r-POB-4增塑GAP基含能热塑性弹性体(GAP-ETPE)推进剂时,推进剂的断裂延伸率提高了约70%,稠度系数降低了约49%,粘流活化能降低了约20%,且优于端叠氮基聚叠氮缩水甘油醚(GAPA)增塑剂,表明叠氮超支化共聚物作为增塑剂可有效改善ETPE推进剂的力学性能和工艺性能.  相似文献   

11.
为提高高聚物粘结炸药(polymer bonded explosive,PBX)炸药载体的力学强度,在炸药的粘结剂体系中引 入聚氨酯弹性材料进行聚醚/聚酯粘结剂高强度载体设计。通过调控聚氨酯弹性体制备过程中多元醇的比例和分子 量、固化剂的种类,利用旋转流变仪和多功能万能材料试验机开展材料固化速率性能分析和固化后聚氨酯弹性体对 端羟基聚丁二烯(hydroxyl-terminated polybutadiene , HTPB)粘结剂体系力学强度影响规律分析。结果表明: PCL_PTMG 聚氨酯弹性体拉伸强度的大小与固化剂的固化速率相关;改变聚酯聚醚分子量对弹性体抗拉强度的影响 不大;当聚酯聚醚的比例为4:1 时,弹性体抗拉力学强度最优;聚氨酯弹性体增大了HTPB 粘结剂体系强度。  相似文献   

12.
大量粗粒度AP和降速剂的添加很难实现低燃速丁羟推进剂高强度的技术要求。研究以静态燃速不高于5.1 mm/s(20℃,6.0 MPa)低燃速丁羟推进剂作为基础配方,通过优选HTPB规格、键合剂组合和添加新型扩链剂的方法提高推进剂力学特性。结果表明,采用新型扩链剂SX,使70℃推进剂的抗拉强度高于1.0 MPa,伸长率大于10%。  相似文献   

13.
为了提高高氯酸铵(AP)/端羟基聚丁二烯(HTPB)底排推进剂的力学性能,在原始AP/HTPB底排推进剂配方中添加质量分数分别为0.3%和0.5%的2 mm短切碳纤维。对含短切碳纤维的AP/HTPB底排推进剂进行静态单轴拉伸、压缩性能实验。用扫描电镜(SEM)进行试件断裂面微观分析。实验结果表明:添加质量分数为0.3%和0.5%的2 mm碳纤维的AP/HTPB底排推进剂的拉伸强度分别提高了11.7%和33.0%,压缩强度分别提高2.1%和7.8%。短切碳纤维分布在HTPB基体中。短切碳纤维与HTPB基体的黏结性能良好。新型含短切碳纤维的AP/HTPB底排推进剂的破坏主要由AP颗粒脱粘引发。短切碳纤维对HTPB基体中微裂纹的发展有抑制作用。显示短切碳纤维是良好的AP/HTPB底排推进剂的增强体。  相似文献   

14.
GAP/HTPB共混粘合剂体系的力学性能研究   总被引:2,自引:1,他引:1  
倪冰  覃光明  冉秀伦 《含能材料》2010,18(2):167-173
利用端羟基聚丁二烯(HTPB)粘合剂和端羟基叠氮聚醚(GAP)共混,以改善纯GAP粘合剂的力学性能;探讨各种固化反应条件对共混粘合剂力学性能的影响;静态拉伸测试结果显示共混胶片的确产生了协同效应,GAP与HTPB质量比11时,常温下粘合剂拉伸强度可达到3.833MPa,最大延伸率可达593%。动态热机械测试(DMA)结果显示,通过调整固化工艺条件,能够使得GAP与HTPB本不相容的两相产生反应增容,损耗因子-温度(Tanδ-T)曲线在-60.2℃附近出现单一的玻璃化温度;SEM照片更从微观形态上印证了以上两点。结果显示,HTPB与GAP共混粘合剂体系具有良好的力学性能,对GAP在复合固体推进剂中的应用具有一定的参考价值。  相似文献   

15.
研究了新型混合固化剂二聚脂肪酸二异氰酸酯(DDI)/异佛尔酮二异氰酸酯(IPDI)固化端羟基聚丁二烯(HTPB)基聚氨酯的力学性能及其在PBX炸药中的应用。结果表明,当混合固化剂中DDI与IPDI的异氰酸酯基(NCO)的摩尔比为1/3时,HTPB基聚氨酯的拉伸强度和延伸率达到最大值(0.427 MPa和579.9%)。当DDI与IPDI的NCO摩尔比为1/1时,聚氨酯的压缩失效载荷最高。DDI/IPDI固化的HTPB基聚氨酯的延伸率是甲苯二异氰酸酯(TDI)固化聚氨酯的2.51倍。DDI/IPDI固化的PBX炸药的压缩率比使用TDI提高57.3%。使用DDI/IPDI时,PBX药片撞击感度试验和药片剪切试验的反应阈值提高了0.25 m以上,PBX的撞击安全性得到改善。  相似文献   

16.
采用溶液共混工艺,将聚叠氮缩水甘油醚(GAP)型含能热塑性弹性体(ETPE)与硝化纤维素(NC)进行物理共混,制得不同质量比的GAP-ETPE/NC共混聚合物。采用傅里叶变换红外光谱(FT-IR)和广角X-射线衍射仪(WXRD)表征制备的共混聚合物结构,动态力学热分析(DMA)、万能材料试验机、邵氏硬度仪和热重分析(TG)研究其热学和力学性质。结果表明,制备的GAP-ETPE/NC共混聚合物具有明显的叠氮型聚醚聚氨酯弹性体和硝化纤维素特征,相容性较好,热稳定性较单纯NC有一定改善。NC含量增大,有利于共混聚合物结晶程度的提高,使其表现出较高的模量和强度,GAP-ETPE含量增大时,共混聚合物的延伸率和低温力学性能得到显著改善。其中当GAP-ETPE/NC质量比从5/5变化到3/7时,共混聚合物抗拉强度由20.7 MPa增加至39.2MPa,断裂伸长率由141%降至40.6%。  相似文献   

17.
为研究端羟基聚丁二烯(HTPB)推进剂存在初始缺陷对其宏观力学性能的影响,对定制的不同界面缺陷含量的HTPB推进剂开展了多步松弛和单轴拉伸试验。获得了HTPB推进剂的平衡响应曲线和拉伸曲线。采用Ogden模型拟合了不含缺陷的HTPB推进剂的平衡响应曲线,引入应变率参数M来描述HTPB推进剂单轴拉伸曲线的率相关特性。通过该曲线拟合,得到了不含缺陷的HTPB推进剂的粘超弹本构模型参数。考虑了缺陷的影响,通过引入初始缺陷损伤因子f,构建了含初始界面缺陷的HTPB推进剂的粘超弹本构模型,分步拟合得到了所有模型参数。最后,用本研究所建模型预测了单轴拉伸载荷下的HTPB推进剂的宏观力学性能,结果表明,预测结果与试验结果一致,二者最大偏差仅为4.4%,验证了模型的可靠性。  相似文献   

18.
为了研究固化剂化学结构对3,3-双叠氮甲基氧丁环-四氢呋喃共聚醚(PBT)弹性体力学性能的影响,分别以六亚甲基二异氰酸酯(HDI)与水的加成产物N100、三羟甲基丙烷与HDI混合物(TMP/HDI)为固化剂,通过与PBT反应制备得到不同固化剂交联的PBT弹性体。采用力学、低场核磁、红外分析方法,考察了异氰酸酯固化剂结构对PBT弹性体力学性能的影响规律。结果表明:相同化学交联网络密度下,PBT-N100弹性体S0的断裂拉伸强度为(0.983±0.03)MPa,延伸率为(110±7)%,初始拉伸模量为(1.80±0.02)MPa;PBT-TMP/HDI弹性体S4的断裂拉伸强度为(1.43±0.08)MPa、延伸率为(336±6)%,初始拉伸模量为(1.26±0.01)MPa。PBT-N100弹性体S0网链物理交联强度高于S4。N100中脲羰基与氨基较强的氢键作用提高了PBT弹性体网链间的物理相互作用,使得弹性体S0拉伸模量高于S4、延伸率低于S4。  相似文献   

19.
短切纤维对RDX/TNT熔铸炸药的力学改性   总被引:2,自引:2,他引:0  
郑保辉  王平胜  罗观  黄勇 《含能材料》2013,21(6):786-790
采用玻璃纤维、聚酯纤维、铝纤维、碳纤维4种短切纤维作熔铸炸药力学性能改性剂,研究了压缩、拉伸力学实验中短切纤维的种类、添加量和长度对RDX/TNT 65/35熔铸炸药力学性能的影响。结果表明,聚酯纤维对压缩强度的改善效果最佳,添加量为0.4%时压缩强度达27.94 MPa。铝纤维会显著降低炸药的拉伸强度和拉伸延伸率。玻璃纤维添加量为0.2%时拉伸、压缩力学性能均低于不掺杂纤维材料的RDX/TNT 65/35熔铸炸药。添加量在0.2%~1.0%时,65/35-RDX/TNT的压缩力学性能随玻璃纤维用量的增加而升高。添加量分别为0.01%和0.05%时,使用3 mm碳纤维的炸药拉伸力学性能好于使用6 mm碳纤维,掺杂0.05% 3 mm碳纤维的炸药各项拉伸力学性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号