首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过建立一经验公式来预测熔化极气体保护焊十字接头根部失效的疲劳寿命。采用高强可时效硬化的AA7075-T6铝合金作为基材进行焊接实验。实验设计概念被用来优化进行疲劳实验所需要的次数。在一伺服液压控制疲劳实验机上进行疲劳实验,实验采用恒定荷载。采用所建立的经验公式,预测的熔化极气体保护焊十字接头根部失效疲劳寿命可达到95%的可信度水平。详细讨论了十字接头尺寸对疲劳寿命的影响。  相似文献   

2.
研究12 mm厚AA7075-T651铝合金板搅拌摩擦焊接头的疲劳裂纹扩展行为。从搅拌摩擦焊接头以及母材中截取试样,对试样进行疲劳裂纹扩展实验。对搅拌摩擦焊接头以及母材的横向拉伸性能进行评估。用光学显微镜和透射电镜分析焊接接头的显微组织。用扫描电镜观察试样的断裂表面。与母材相比,焊接接头的ΔKcr降低了10×10-3 MPa·m1/2。搅拌摩擦焊AA7075-T651接头的疲劳寿命明显低于母材的,其原因可归结于焊缝区的析出相在搅拌摩擦焊接过程中的溶解。  相似文献   

3.
AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.  相似文献   

4.
Though the preferred welding process to weld aluminium alloy is frequently constant current gas tungsten arc welding (CCGTAW), it resulted in grain coarsening at the fusion zone and heat affected zone(HAZ). Hence, pulsed current gas tungsten arc welding(PCGTAW) was performed, to yield finer fusion zone grains, which leads to higher strength of AA6061 (Al-Mg-Si) aluminium alloy joints. In order to determine the most influential control factors which will yield minimum fusion zone grain size and maximum tensile strength of the joints, the traditional Hooke and Jeeves pattern search method was used. The experiments were carried out based on central composite design with 31 runs and an algorithm was developed to optimize the fusion zone grain size and the tensile strength of pulsed current gas tungsten arc welded AA6061 aluminium alloy joints. The results indicate that the peak current (Ip) and base current (IB) are the most significant parameters, to decide the fusion zone grain size and the tensile strength of the AA6061 aluminum alloy joints.  相似文献   

5.
高频脉冲变极性焊接工艺性能研究   总被引:2,自引:0,他引:2  
邱灵  杨春利  林三宝 《焊接》2007,(7):35-38
分析了高频脉冲电流对变极性焊接电弧特性、焊接工艺及焊缝性能的影响,试验结果表明,高频电流脉冲能够较大程度地压缩电弧等离子体、提高电弧轴向压力及电弧挺度,在相同焊接电流有效值的情况下,频率在5kHz以上的电流脉冲能将电弧力提高到普通变极性焊接的260%左右.同时高频脉冲电流能够提高变极性焊接的焊缝熔深,减小焊缝正面余高以及改善焊接效率.对于2219-T6时效强化铝合金而言,采用叠加10 kHz高频脉冲变极性焊接工艺,焊缝抗拉强度在未经任何焊后热处理的情况下能够达到300 MPa左右,相当于母材强度的67%.  相似文献   

6.
焊接方法对AA2219铝合金接头性能的影响(英文)   总被引:2,自引:0,他引:2  
使用钨电极惰性气体保护焊接、电子束焊接和搅拌摩擦焊接技术制备无填充金属的AA2219铝合金对焊接头。研究三种焊接工艺对材料拉伸、疲劳和腐蚀行为的影响。使用光学和电子显微镜研究显微结构。结果表明,与钨电极惰性气体保护焊和电子束焊接相比,搅拌摩擦焊制备的接头具有较高的拉伸和疲劳性能与较低的耐蚀性能,这主要是由于其中的细化晶粒和均匀分布的强化析出相所引起的。  相似文献   

7.
TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results indicate that double-sided GTAW is superior over regular single-sided GTAW on the aspects of increasing penetration, reducing welding deformation and improving welding efficiency. Good weld joint was obtained, which can reach 96.14% tensile strength and 70.85% elongation percentage of the base metal. The grains in heat-affected zone(HAZ) are thin and equiaxed and the degree of grain coarsening increases as one moves to the weld center line, and the interior of grains are α and α′ structures. The coarse columned and equiaxed grains, which interlace martensitic structures α′ and acicular α structures, are observed in weld zone. The fracture mode is ductile fracture.  相似文献   

8.
采用不同保护气体对440 MPa级低合金高强钢(HSLA钢)进行气保焊焊接,通过光学显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)和电子背散射衍射技术(EBSD)对焊缝微观组织及夹杂物形貌进行了观察,研究了保护气体组成对焊缝组织及韧性的影响,并分析了不同成分保护气体对焊缝夹杂物大小、数量及其成分的影响.结果表明,保护气体为100% CO2,焊缝金属韧性较差;保护气体(体积分数)为80% Ar+20% CO2和90% Ar+ 10% CO2,焊缝金属韧性较好.100% CO2气体保护焊焊缝组织主要为铁素体和贝氏体,混合气体保护焊(20% CO2和10% CO2)焊缝组织主要为针状铁素体和少量侧板条铁素体.随着保护气体中CO2含量的减少,焊缝金属中夹杂物数量、尺寸均降低,且成分发生变化.对于440 MPa级HSLA钢,合理的保护气体组成可以得到良好的焊接质量.  相似文献   

9.
比较了在恒电流和脉冲电流条件下,气体保护焊铝合金接头的温度分布和焊缝外形,研究了脉冲电流对铝合金接头的拉伸性能、硬度分布、微观组织特征和残余应力分布的影响。与恒电流焊接相比,由于在熔池发生了晶粒细化,使用脉冲电流焊接可以提高焊缝的拉伸性能。  相似文献   

10.
为提高7075-T6铝合金熔化焊接接头性能,提出了一种双丝脉冲冷金属过渡(DW-CMTP)焊接方法,并研究了双丝平均电流大小对6 mm厚7075-T6铝合金对接接头组织和力学性能的影响. 结果表明,通过调控主、从丝电流可实现DW-CMTP焊接过程无明显飞溅且焊后接头成形效果良好;增加主、从丝平均电流分别能够促进熔深和熔宽;提高主丝平均电流可增大气泡上浮力,提高从丝平均电流则可加强熔池流动,以致均促进了焊缝中气体逸出,且从丝平均电流的增大对气孔降低效果更为显著;接头强度随主丝平均电流增大呈现先增加后降低的趋势,随从丝平均电流的增大则呈现先降低后增加的趋势,焊接接头最大强度达到389 MPa,为母材强度的70.8%.  相似文献   

11.
AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW), and friction stir welding (FSW) processes. The fabricated joints were post-weld aged at 175 °C for 12 h. The effect of three welding processes and post-weld aging (PWA) treatment on the fatigue properties is reported. Transverse tensile properties of the welded joints were evaluated. Microstructure analysis was also carried out using optical and electron microscopes. It was found that the post-weld aged FSW joints showed superior fatigue performance compared to EBW and GTAW joints. This was mainly due to the formation of very fine, dynamically recrystallized grains and uniform distribution of fine precipitates in the weld region.  相似文献   

12.
铝合金TIG电弧横焊接头缺陷及控制   总被引:3,自引:0,他引:3       下载免费PDF全文
重型运载火箭燃料贮箱要求对铝合金进行立式装配焊接,TIG电弧横焊是能够较好满足制造要求的方法之一.对铝合金TIG电弧横焊接头的成形特点和焊接缺陷进行分析,利用平板堆焊试验研究焊接电流、焊接速度和焊枪角度对焊缝正面偏移量的影响,最后研究焊接电流频率对气孔缺陷的影响规律.结果表明,采用较小的焊接电流、较快的焊接速度有助于降低焊缝正面的不对称性,利用电弧分力可以抑制熔池下淌,焊接频率为100 Hz时气孔缺陷最少.结合上述试验结果提出了铝合金横焊缺陷的控制措施并进行了试验验证.  相似文献   

13.
董红刚  吴林  高洪明 《焊接学报》2005,26(11):55-58
通过工艺试验,详细分析了LYl2CZ铝合金板交流脉冲等离子弧(PA)-钨极氩弧(GTA)双面弧焊(DSAW)的工艺特点。通过与常规钨极氩弧焊和等离子弧焊工艺比较,发现该工艺可以显著增加熔深,减小焊后热变形,提高焊接生产效率。分别采用多孔喷嘴和单孔喷嘴进行了对比试验,其中采用多孔喷嘴能够有效防止双弧的产生,采用单孔喷嘴能够获得较大熔深。当采用小孔型交流脉冲双面弧焊工艺焊接铝合金时,由于小孔的存在,焊接过程中阴极雾化效果降低,影响焊缝成形及质量。  相似文献   

14.
通过试验研究了Nd:YAG激光 脉冲GMAW复合热源焊接过程中焊接工艺参数对焊缝熔宽的影响.结果表明,复合热源焊缝熔宽随电弧功率和激光功率的增大而增大,随焊接速度的提高而减小,而光丝间距和离焦量对复合热源焊缝熔宽影响相对较小.复合热源焊缝熔宽远大于激光焊缝熔宽而仅稍大于脉冲GMAW焊缝熔宽,说明在复合热源焊接过程中脉冲GMAW决定焊缝熔宽,这主要是由于激光束加热区域远小于电弧加热区域造成的.试验结果的分析比较还表明,在激光 电弧复合热源焊接过程中激光功率的增大还极大地提高了焊接速度.  相似文献   

15.
焊接速度对铝合金双脉冲GMAW的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
利用数字化多功能焊接电源进行了不同焊接速度的AA6061铝合金双脉冲熔化极气体保护焊(DP-GMAW)试验.得到了极少焊接缺陷的接头.根据采集的试验参数开展了数值模拟,得到了熔池的温度场和和流速场,然后计算了熔池的温度梯度和冷却速度.结果表明,当低频调制频率已定时,焊接速度与送丝速度和平均电流相匹配时,焊接速度对DP-GMAW可焊性没有影响,焊波间距随着焊接速度的增加而增大.随着焊接速度的增加,DP-GMAW温度梯度减小,冷却速度增加,熔化区硬度增加.  相似文献   

16.
The effects of joint design on the mechanical properties of AL7075-T6 aluminum sheet were studied on the latest automated gas-tungsten arc-welding system. Using ER5356 filler metal, full-penetration welds were made on workpieces with various included joint angles. Testing of the mechanical properties of the joints was done in the as-welded, naturally aged, and postweld heat-treated conditions. The results show that by using crack-resistant filler, and by selecting the proper joint design and postweld heat treatment, strong, dependable welds can be produced on thin AL7075 sheet material. An elasticity model of the weld joint was established to help understand the mechanical behavior of the joints. An undermatched joint design is shown to be capable of achieving a joint strength that matches the strength of the base alloy.  相似文献   

17.
As part of a European research project, partially funded by the Steel Research Fund (RFS-CR-03049), the potential benefits derived from the use of synchronized tandem wire welding (STW) technology applied to structural plates, in place of the currently used arc techniques, have been evaluated.

In particular, two welded joint types have been investigated: T joints and butt joints in S355 grade structural plate, 6 and 12 mm thick. Considering the variables that characterize the process, also depending on the type of tandem torch, i.e. variable or fixed electrode configuration, the influence of the distance between the electrodes, stick-out, the type of arc and weld speed on the process characteristics have been examined.

The joints obtained have been compared with those produced using traditional technology in terms of overall joint deformation, structural integrity, microstructural analysis and mechanical performance (toughness and fatigue strength).

The results have demonstrated that the STW process is an effective technology for increasing both the weld speed, at the same penetration and the quantity of metal deposited, by about 50% compared to GMAW welding, with only slightly higher but relatively modest heat input (1 kJ/mm). These operating conditions have allowed the preservation of a level of joint quality (EN ISO 5817 quality level B) and structural integrity, comparable with those of GMAW and SAW welded joints, in addition to significant reductions in distortion. Furthermore, the fatigue strength of STW joints has also been in compliance with the reference class (butt joint, FAT class 100).

The objective of the project (RFS-CR-03049), partially supported by the Research Fund for Coal and Steel, was to explore and quantify the benefits of STW applied to structural steels as an alternative technology to established arc welding technologies.

T joints and butt joints of 6 and 12 mm steel grade S355 plates have been investigated using two different types of welding gun configuration, i.e. fixed electrodes and variable electrodes configuration. The influence of electrodes distance, stick-out, arc types and welding speed have been examined. The optimized joints have been characterized in terms of structural integrity, microstructure, mechanical performance (impact fracture toughness and fatigue resistance), total deformation and compared to traditional arc welding joints.

STW technology allowed an increase of about 50% in both the welding speed, at the same penetration and deposited metal compared to GMAW with a not much greater heat input (1 kJ/mm) maintaining the same level of joint quality (EN ISO 5817 quality level B) and structural integrity with a reduction of joint distortion. In addition, fatigue resistance of STW joints was in compliance with the requirement (FAT Class 100 MPa).  相似文献   

18.
Abstract

The influence of weld geometry in conjunction with the gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes on fatigue properties of AISI 304L load carrying transverse fillet welded cruciform joints, containing lack of penetration (LOP) defects, has been studied. The fatigue lives of the joints were evaluated using conventional S -N (stress - number of cycles to failure) and fracture mechanics methods. The fatigue lives were calculated according to the two stage approach in which both the fatigue crack initiation and the crack propagation phases were considered. Constant amplitude fatigue experiments with stress ratio R=0 were carried out using a 100 kN servohydraulic Dartec universal testing machine at a frequency of 30 Hz. An automatic crack monitoring system based on crack propagation gauges was used to obtain the crack initiation and propagation data during the fatigue process. The predicted life was compared with the experimental values. It was found that the fatigue lives of the joints fabricated via GTAW were longer than those of the corresponding GMAW joints. It was also observed that the fillet geometry plays a major role in determining the failure mode and life. Test results have been compared with the BS 5400 design curve.  相似文献   

19.
Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)welding processes are presented.Results showed that the base material along rolling direction exhibited a tensile strength of around 600 MPa and elongation of 11%.For the as welded condition,tensile strength was 260 MPa and elongation percent of 3%.This behavior was attributed to brittleness induced by the microstructural characteristics of the welded alloys,as well as high porosity.Hardness profiles along the welds were obtained and different welded zones were identified.A soft zone(*100 HV0.1) in the heat affected zone for GMAW and MIEA was observed,the minimum hardness corresponding to weld metal(*85 and *96 HV0.1for GMAW and MIEA,respectively).The high dilution between filler and base metal during welding in MIEA allows to the Zn and Cu to flow from the base metal into the weld metal,inducing hardening by solution and subsequent artificial aging.In this regard,the hardness of the weld metal for MIEA increases by 56%,while the tensile strength reaches a value close to 400 MPa.For GMAW,non-favorable hardening effect was observed for the weld metal after solution and artificial aging.  相似文献   

20.
轨道交通用6082铝合金焊接接头组织与性能   总被引:1,自引:0,他引:1  
罗传孝  王少刚  翟伟国 《电焊机》2011,41(11):68-72
采用熔化极氩孤焊(MIG)方法,以ER5356焊丝作为填充材料,对轨道交通用6082铝合金进行焊接,并对获得的接头微观组织和力学性能进行分析测试.金相组织观察表明,接头焊缝金属区为细小的等轴晶组织,主要由α -Al基体相和Mg2Si强化相组成,而热影响区为树枝晶组织,晶粒有所长大.力学性能测试表明,接头的抗拉强度约为母...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号