首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
尖晶石型Li Mn2O4正极材料由于Jahn–Teller效应和Mn溶解,在充放电过程中容量衰减严重,循环稳定性差。联合元素掺杂和单晶形貌调控策略,采用固相燃烧法制备了具有{111}、{100}和{110}晶面的去顶角八面体单晶LiFe0.12Mn1.88O4正极材料。研究结果表明,Fe掺杂没有改变尖晶石型Li Mn2O4的晶体结构,有效抑制了Jahn–Teller效应,促进了材料的结晶性及{400}和{440}衍射峰晶面的择优生长,表现出良好的倍率性能和容量保持率。在25℃,1 C和5 C倍率下LiFe0.12Mn1.88O4的首次放电比容量分别为105.2 mA·h/g和92.4 mA·h/g,1 000次循环后容量保持率分别为71.1%和75.2%;在高倍率10 C下,经1 000次循环后,其容量保持率可达到88.4%。在55℃和1 C条件下,首次放电比容量为10...  相似文献   

2.
采用固相燃烧法合成了亚微米单晶多面体LiFe0.05Mn1.95O4正极材料。借助XRD、FE-SEM、TEM、XPS和恒电流充放电等手段对样品的结构、形貌、物相组成和电化学性能进行测试。结果表明,Fe掺杂未改变尖晶石型LiMn2O4的立方晶系结构,其{400}和{440}衍射峰相对应的晶面出现显著的择优生长,形成了形貌为{111}、{110}和{100}晶面的单晶去顶角八面体晶粒。LiFe0.05Mn1.95O4正极材料表现出比纯LiMn2O4材料更为优异的电化学性能,在1C和5C时有着114.7mA·h/g、104.7mA·h/g首次放电比容量,10C倍率下经1000次循环后,容量保持率为83.9%。循环伏安与阻抗分析得出掺杂后的样品有着较大的锂离子扩散系数与较小的活化能。对5C倍率循环1000次后Fe掺杂样品的极片分析发现,其晶体结构基本无变化,适量的Fe掺杂能够有效抑制尖晶石型LiMn2O4在充放电循环过程中的Jahn-Teller效应以及Mn的溶解,提升材料的结构稳定性与容量保持率。  相似文献   

3.
采用La掺杂和固态电解质Li1.3Al0.3Ti1.7(PO4)3包覆对LiNi0.9Co0.05Mn0.05O2进行改性,研究掺杂和包覆对LiNi0.9Co0.05Mn0.05O2结构与性能的影响。结果表明:适量的La掺杂可以降低LiNi0.9Co0.05Mn0.05O2材料的离子迁移阻抗,提高Li+扩散系数,稳定材料的结构,从而提高材料的放电比容量及循环性能,当La掺杂量为0.1 wt%时,首次放电比容量为180.1 mAh·g-1,经过100次循环后的容量保持率高达93.34%,远高于未掺杂样品的86.20%。Li1.3Al0.3Ti1....  相似文献   

4.
采用共沉淀法制备了锂离子电池正极材料Li1.2Mn0.6Ni0.2O2和Li1.2Ni0.18Mn0.58Cr0.04O2,并利用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对材料的晶体结构、形貌和电化学性能进行了表征。结果表明:掺Cr3+后材料的阳离子混排程度降低,层状结构更为规整,电化学性能明显优于Li1.2Mn0.6Ni0.2O2,其0.2C和1C首次放电容量分别为262.2 mAh/g和241.7 mAh/g,1C倍率下循环50次的容量保持率为95.5%。  相似文献   

5.
利用溶胶-凝胶高温法制得三元正极材料Li LiNi1/3Co1/3Mn1/3O2,在不同的温度条件下,系统的研究了材料的电化学性能。研究发现,该材料在环境温度为25、45、75℃条件下,首次放电容量分别为139.5、129.7、97.8mAh·g,第20周放电容量分别为133.2、120.9、87.8mAh·g-1,20周循环容量保持率分别为95.5%、93.2%、89.8%。表明该材料具有优越的循环性能和高温稳定性能。  相似文献   

6.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2具有放电比容量大、热稳定性好、成本低、安全性能好等优点,但其倍率性能有待进一步提升。本文采用水热法制备了K+掺杂LiNi1/3Co1/3Mn1/3O2材料LNCM-xK。通过X射线衍射谱、场发射扫描电镜和X射线光电子能谱表征LNCM-xK的形貌和结构,通过电化学工作站和蓝电测试系统测试其电化学性能。结果表明:K+掺杂能有效降低阳离子混排程度,改善LiNi1/3Co1/3Mn1/3O2材料的电化学性能,其中当x=0.125时K+掺杂LiNi1/3Co1/3Mn1/3O2样品(LNCM-0.125K)阳离子混排程度最低;LNCM-0.125K样品电化学性能最佳,0.2 C下50次循环后容量保持率为96.15%;在不同电流密度(0.2 C,0.5 C,1 C,2 C,5 C)下进行倍率性能测试,连续充放电30次后LNCM-0.125K样品容量保持率为97.00%。  相似文献   

7.
基于水热/溶剂热法制备LiNi0.8Co0.1Mn0.1O2电极材料,以镍、钴、锰乙酸盐为原料,以六亚甲基四胺为沉淀剂、水或乙醇为溶剂,通过调节溶剂组分控制Ni0.8Co0.1Mn0.1(OH)2(NCM)的成核与生长速率,从而合成两种形貌不同的Ni0.8Co0.1Mn0.1(OH)2前驱体,再经过混锂煅烧获得LiNi0.8Co0.1Mn0.1O2正极材料,研究比较了其电化学性能。以水为溶剂通过水热法合成的前驱体样品呈现出由一次片状颗粒紧密堆积组成的长方体状二次颗粒形貌,经混锂煅烧得到的产物表现出较高的放电比容量,在0.5C倍率下首次放电比容量可达到189.70 mA·h/g,循环200次容量保持率为69.72%。以乙醇为溶剂通过溶剂热法合成得到球形二次颗粒前驱体,最终得到的产物具有多孔球形结构,表现出了优异的循环性能,0.5C首次放电比容量为178.65 mA·h/g,循环200次容量保持率仍高达94.55%。  相似文献   

8.
采用固相法在不同的煅烧温度下(725~825℃)合成了高镍无钴LiNi0.90Mn0.10O2正极材料,并通过结构表征和电化学测试考察了煅烧温度对正极材料的结构和电化学性能的影响。结果表明,煅烧温度会改变材料的晶胞参数,在最佳煅烧温度775℃时所制得的正极材料Li+/Ni2+混排程度最低;该煅烧温度制备的样品首次放电比容量最高,同时倍率性能也表现最佳,并且在循环200圈后仍然保持着最高的放电比容量。  相似文献   

9.
采用液相无焰燃烧法在500℃反应1 h、600℃二次焙烧不同时间制备锂、镍共掺杂尖晶石型Li1.05Ni0.02Mn1.93O4正极材料。焙烧不同时间制备的样品均呈现出LiMn2O4的尖晶石晶体结构且均为单相,没有任何杂质相出现。延长焙烧时间有利于晶粒发育,提高合成材料的结晶性。二次焙烧9 h合成的正极材料具有良好的循环稳定性和倍率性能,在1 C倍率的首次放电容量为102.1 mA·h/g, 500次循环后具有69.15%的容量保持率;在5 C释放出91.9 mA·h/g容量;10 C循环1 000次的容量保持率为76.35%。具有较好的循环可逆性、较小的电荷转移阻抗和较低的表观活化能。适量的锂、镍共掺杂可有效提高LiMn2O4的结构稳定性、抑制Jahn-Teller效应和缓解锰的溶解,使其具有更高的电化学性能。  相似文献   

10.
宋刘斌  唐福利  肖忠良 《化工学报》2018,69(12):5332-5338
采用湿法融合技术及高温固相法合成Li3VO4包覆的LiNi0.8Co0.1Mn0.1O2正极材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等方法研究材料的结晶相、形貌、微观结构。研究表明,Li3VO4均匀地包覆在LiNi0.8Co0.1Mn0.1O2表面,未改变原材料的材料结构和形貌,包覆层厚度为1~2 nm。不同含量的Li3VO4对LiNi0.8Co0.1Mn0.1O2正极材料进行修饰研究表明,3%(质量)Li3VO4包覆的LiNi0.8Co0.1Mn0.1O2在1 C下100次循环后容量保持率为94.13%,具有最佳的倍率性能和循环性能。此外,循环伏安(CV)和交流阻抗(EIS)分析表明,Li3VO4能提高Li+电导率,抑制活性材料与电解液之间的副反应,提高材料的电化学性能。  相似文献   

11.
采用碳酸盐共沉淀法和高温烧结工艺将一定量的Mo6+掺杂到Li1.20Mn0.54Ni0.13Co0.13O2正极材料中。利用XRD、SEM、EDS和恒流测试仪研究Mo6+掺杂对Li1.20Mn0.54Ni0.13Co0.13O2正极材料的晶体结构、微观形貌和电化学性能的影响。结果显示,Li1.20Mn0.52Ni0.13Co0.13Mo0.02O2表现出更低的阳离子混排和优异的电化学性能。经过Mo6+掺杂后的正极,由于Li+高速的迁移速率,使得首次不可逆容量损失降低,并展现出更好的高倍率性能和优异的循环稳定性。在0.5C倍率下循环100周后,Li1.20Mn0.52Ni0.13Co0.13Mo0.02O2的容量保持率达到92.2%,远远大于Li1.20Mn0.54Ni0.13Co0.13O2的87.5%。另外,当放电倍率增大到5C时,Li1.20Mn0.54Ni0.13Co0.13O2的放电比容量要比Li1.20Mn0.52Ni0.13Co0.13Mo0.02O2低21.0 mA·h/g。因此,采用Mo6+掺杂改性Li1.20Mn0.54Ni0.13Co0.13O2正极材料,可以有效提高锂电池的循环保持率和高倍率放电性能。  相似文献   

12.
以Zr(NO34·5H2O和CH3COOLi·2H2O为原料,采用湿化学法,将Li2ZrO3包覆在LiNi0.8Co0.1Mn0.1O2锂离子电池正极材料的表面,研究Li2ZrO3不同包覆比例对LiNi0.8Co0.1Mn0.1O2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li2ZrO3层均匀地包覆在LiNi0.8Co0.1Mn0.1O2表面,其厚度约为8 nm。与纯相相比,1%(质量分数) Li2ZrO3包覆的LiNi0.8Co0.1Mn0.1O2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g-1、100次循环之后放电比容量为169.5 mA·h·g-1,其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li2ZrO3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

13.
周兰  李旺  廖文俊 《无机盐工业》2021,53(11):17-24
尖晶石LiNi0.5Mn1.5O4正极材料因理论比容量和理论比能量高、工作电压高、资源丰富且价格低廉等优点而备受关注,但该材料因为高电压下电解液的分解及界面副反应导致循环性能和倍率性能不佳,制约着材料的推广应用。结合近几年的研究报道,介绍了LiNi0.5Mn1.5O4正极材料的结构及脱嵌机制、表/界面化学、改性方法,着重介绍了LiNi0.5Mn1.5O4材料的表面性质及不同组分之间的界面反应机制及对正极材料电化学性能的影响,指出LiNi0.5Mn1.5O4材料的晶面取向、颗粒形貌、表面元素分布、包覆及离子掺杂是改善镍锰酸锂材料电化学性能的有效途径。同时,通过溶剂替代、成膜添加剂的添加、改变锂盐的种类及浓度等方式,开发与之匹配的耐高压电解液也是提升镍锰酸锂电池性能的重要方法。最后,对LiNi0.5Mn1.5O4正极材料表面改性和电解液界面构筑方面进行了总结和展望,旨在为提升该材料性能的相关研究提供参考。  相似文献   

14.
钠离子电池因环境友好、储量丰富等优势,成为锂离子电池的后继者,在储能材料方面有很大的应用潜力。针对钠离子电池锰基正极材料存在结构不稳定、循环稳定性差等问题,采用溶胶-凝胶法制备Na0.7Fex Mn((1-x))O2(00.7Fex Mn((1-x))O2材料微观结构、电化学性能的影响。结果表明:铁的掺杂稳定了材料P2相晶型且增加了钠层间距;合成的两种材料Na0.7Fe0.2Mn0.8O2和Na0.7Fe0.35Mn0.65O2在电压范围为2~4 V、放电倍率为0.5C的条件下,首次充/放电比容量分别为88.54、63.73 mA·h/g和74.02、49.01 mA·h/g,循环...  相似文献   

15.
为改善镍锰酸锂的电化学性能,以硝酸铟(In(NO3)3·H2O)为原料,通过高温固相法在镍锰酸锂电极材料表面包覆一层惰性氧化铟(In2O3),并研究不同In2O3包覆量对镍锰酸锂复合材料的电化学性能的影响。XRD测试结果显示,包覆氧化铟并不会改变正极材料LiNi0.5Mn1.5O4自身结构。当包覆量为7%时,在0.1 mA的测试电流下首次放电比容量为134.21 mAh/g,明显高于未涂覆材料(115.65 mAh/g),100次循环后容量为128.4 mAh/g,容量保持率为95.67%;在0.5 mA的测试电流条件下,首次放电比容量为78.13 mAh/g, 100次循环后比容量为56.25 mAh/g,容量保持率为64.44%。In2O3包覆起到保护材料和促进离子传导的作用,可有效提高正极材料的电化学性能。  相似文献   

16.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi0.5Mn1.5O4/Li电池的电化学行为和LiNi0.5Mn1.5O4材料表面形貌。结果表明,当在电解液中添加20% (体积分数)BMIMTFSI时,LiNi0.5Mn1.5O4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g-1,5C下的放电比容量为109.36 mA·h·g-1,比在1 mol·L-1 LiPF6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi0.5Mn1.5O4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

17.
采用共沉淀-高温固相合成法制备锂离子电池正极材料Li1.2Ni0.2Mn0.2-x/2Mn0.6-x/2CrxO2(x=0,0.04,0.08,0.12)。利用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试和电化学交流阻抗谱(EIS)对掺杂不同Cr含量的正极材料的结构、形貌和电化学性能进行分析测试。结果表明:制备出的Li1.2Ni0.2Mn0.2-x/2Mn0.6-x/2CrxO2正极材料均具备层状固溶体结构。Cr掺杂不会改变材料的结构,而且能够有效抑制循环过程中材料由层状向尖晶石结构转变的过程。当Cr的掺杂量为8%(即x=0.08)时,得到的正极材料Li1.2Ni0.16Mn0.56Cr0.08O2具有最好的电化学性能。0.1C的首次放电比容量由未掺杂的230.4 mA·h·g-1增加到246.6 mA·h·g-1,在0.2C电流下50次循环后的容量保持率由93.5%提高至95.36%,5C的放电比容量由91.5 mA·h·g-1增加到104.2 mA·h·g-1。而且x=0.08时制备的样品具有最小的电荷转移阻抗。  相似文献   

18.
采用固相反应法分别合成正极材料纯相LiMn2O4和LiPrxMn2-xO4(x=0.02、0.04、0.06、0.08、0.10)固溶体。采用扫描电镜(SEM)、X射线衍射(XRD)、恒电流充放电等手段,对合成样品的形貌、结构、电化学性能进行了测试。结果表明:当x=0.06时,固溶体LiPr0.06Mn1.94O4具有良好的尖晶石结构,晶体大小较均匀;固溶体LiPr0.06Mn1.94O4具有良好的高温(55 ℃)循环性能,实验电池在55 ℃、1 C充放电倍率下,循环50次后容量保持率为82.5%。  相似文献   

19.
利用分解反应中大比例质量损失和大量气体产生,制备出具有40.369m2·g-1大比表面积的多孔FeF2材料。多孔结构为FeF2材料构建了优异的离子和电子导电通路,表现出优秀的倍率性能和循环性能。在2C、5C和15C的倍率下分别表现出589.21mAh·g-1、406.95mAh·g-1和83.53mAh·g-1的高放电比容量。在0.5C和2C下,循环100次后放电比容量分别为502.5mAh·g-1和267.9mAh·g-1。该结果为电池正极材料提升倍率性能提供了新思路。  相似文献   

20.
采用固相燃烧法和不同的焙烧温度制备了600、650、700和750 ℃的LiZn0.05Al0.03Mn1.92O4材料。实验结果表明,Zn-Al复合掺杂和焙烧未改变LiMn2O4的晶体结构,样品结晶性随焙烧温度的升高而增加,650 ℃及以上时形成了较多包含高暴露{111}、小面积{110}和{100}晶面的截断八面体形貌晶粒,但750 ℃时部分样品发生分解。优化焙烧温度650 ℃的样品具有优良的倍率容量和容量保持率,在5 C和10 C下,初始放电比容量和1000次循环后容量保持率分别为101.3 mAh/g、81.5%和99.9 mAh/g、74.3%。CV和EIS表明,其具有较好的循环可逆性和较大的Li+扩散系数。Zn-Al共掺和形貌调控改性LiMn2O4正极材料有效抑制了LiMn2O4材料的Jahn-Teller效应,形成的截断八面体颗粒形貌降低了Mn的溶解,同时提供了更多的Li+迁移三维通道,改善了材料的倍率容量及循环寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号