首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究在激光熔覆修复工艺中,激光扫描速率对最终形成的熔覆层性能的影响,采用同步送粉法,利用激光熔覆工艺在QT500球墨铸铁上制备了不同扫描速率下的镍基合金熔覆层样本;利用金相显微镜观察熔覆层的显微金相,并使用显微硬度计对熔覆层显微硬度进行了测定与分析,取得了熔覆层样品的硬度、显微金相组织以及样品稀释率等数据。结果表明,在其它条件不变下,随着激光扫描速率的增加,熔覆层组织更加致密、均匀,熔覆层的平均显微硬度得到了显著提高;以激光功率为1.9kW、扫描速率为5mm/s、光斑直径为4mm等参量得到的熔覆层组织与性能最优。此研究对激光熔覆表面强化工艺中合理选择工艺参量提供了理论依据。  相似文献   

2.
Fe314合金激光熔覆工艺优化与表征研究   总被引:1,自引:1,他引:0  
为阐述Fe314合金激光熔覆工艺与成形质量之间的内在联系,采用SN比实验设计方法,并以稀释率为参量对熔覆工艺进行了优化分析和量化表征;获得最优化工艺参数为激光功率480 W,送粉量8.0 g/min.扫描速度600mm/min.验证结果表明:熔覆层稀释率与激光比能、绝对送粉率的定量表征关系具有一定的预测精度.对熔覆层进...  相似文献   

3.
为探究在45钢表面熔覆铁基合金粉末过程中,激光功率、扫描速度和送粉速率对熔覆层性能的影响规律,采用正交试验方案进行激光熔覆的单道成形试验。以熔覆层的宽高比、稀释率和硬度作为判断熔覆层性能质量的评价指标,通过极差分析判断各熔覆工艺参数的影响大小,再基于多目标优化算法得出最佳的单道熔覆工艺参数组合。试验结果表明:在一定工艺参数范围内,送粉速率是影响熔覆层硬度的主要因素,激光功率次之;扫描速度是影响熔覆层高度、宽度的主要因素;送粉速率是影响稀释率的主要因素。获得了最佳工艺参数组合,即激光功率2 056 W,扫描速度8.75 mm/s,送粉速率2.198 g/min,为45钢激光熔覆铁基粉末的工艺参数选择提供依据。  相似文献   

4.
激光熔覆作为一种环境友好和可靠的技术,广泛应用于汽车零部件的表面硬化和受损修复。结合试错法和田口方法设计激光熔覆实验,探究45~#钢表面激光熔覆316L合金粉末的成形工艺参数。以激光功率、扫描速度、送粉速度为激光熔覆可变工艺参数,利用多策略融合的改进蜣螂优化算法优化核极限学习机超参数,基于优化后的核极限学习机分别建立激光熔覆过程评价指标(宽高比、稀释率)的回归预测代理模型,决定系数分别为0.973 5和0.975 9,平均绝对百分比误差分别为0.007 7%和0.061 2%。利用田口方法进行析因分析,激光熔覆工艺参数对稀释率的影响排序为:激光功率(P)>送粉速度(F)>扫描速度(V),宽高比的影响排序为:送粉速度(F)>扫描速度(V)>激光功率(P)。实验结果表明了所提方法的准确性,可以获得理想的熔覆层宽高比和稀释率回归预测模型,为熔覆层的质量控制提供理论依据。  相似文献   

5.
为了获得TiC铁基合金粉末在316L不锈钢上的激光熔覆最佳工艺参数,提出了一种基于遗传算法优化的反向传播(BP)神经网络的激光熔覆参数优化方法。设计三因素五水平的全因子试验,测量了熔覆层的宏观形貌和平均硬度,建立输入参数(激光功率、扫描速度、保护气流量)和响应量(熔覆层宽度、熔覆层高度、稀释率、显微硬度)的神经网络模型。以多元非线性回归分析工艺参数对响应量的影响,并以综合灰关联度表征熔覆层的综合性能,寻优得到最佳参数。试验结果表明,激光功率和扫描速度对熔覆层宽度、稀释率和显微硬度的影响明显,而保护气流量对熔覆层高度影响最显著,遗传算法优化的BP神经网络模型各响应量模型的拟合优度均达到0.85~0.91之间,GA-BP模型精度良好,当参数为1090 W,扫描速度为4.4 mm/s,保护气流量为10 L·min-1,综合性能最佳,表明BP神经网络算法适用于激光熔覆层质量控制和参数优化。  相似文献   

6.
激光熔覆参数对灰铸铁激光熔覆层裂纹的影响   总被引:1,自引:0,他引:1  
通过调整激光熔覆工艺参数 ,对灰铸铁激光熔覆层裂纹问题的研究 ,发现表层裂纹率随激光扫描速度或激光功率的增加有最低值。结合激光熔覆工艺参数 ,分析了残余拉伸应力的变化 ,熔覆层树状晶的结晶方向及渗碳体组织长度和粗细程度的改变 ,同时也分析了珠光体的形态及分布与离异共晶的有无 ,解析了不同激光熔覆工艺参数形成不同裂纹率的原因。  相似文献   

7.
基于神经网络的Co基硬质合金激光熔覆工艺优化   总被引:2,自引:0,他引:2  
建立了Co基硬质合金激光熔覆工艺优化的BP人工神经网络模型,应用该模型对熔覆粉末中TiC百分含量和熔覆工艺参数对硬质合金熔覆层质量的影响进行建模学习训练,成功地预测了熔覆工艺参数对其熔覆层显微硬度和气孔数的影响。当激光功率一定时,熔覆层的显微硬度随扫描速度的增加而增大;激光光斑为2.5mm×6mm的椭圆光斑。在激光输出功率为2900W、扫描速度为18mm/s的优化实验条件下,所得到的Co基硬质合金熔覆层平均显微硬度高达HV0.21197且具有较少的气孔缺陷。结果表明,所建模型有利于Co基硬质合金粉末成分设计和工艺参数优化。  相似文献   

8.
为建立工艺参数与稀释率的关系,提出了送粉式激光熔覆过程中稀释率的概念,并推导出稀释率的表达式。利用金相法检测的熔覆层宏观参数、材料相关的物理参数和工艺参数对稀释率进行了计算,系统分析了影响因素。在激光功率和光斑尺寸保持恒定的条件下,稀释率随扫描速度的增加而减小,随送粉速率的增大而变小;对稀释率随扫描速度变化而出现最小值的现象给出了合理的解释。为进一步研究熔覆层组织凝固行为、工艺参数的优化奠定了理论基础。  相似文献   

9.
张庆茂  杨森  钟敏霖  刘文今 《激光技术》2002,26(5):321-323,333
为描述激光熔覆层质量与工艺参数之间的相互关系,在研究自动送粉激光熔覆过程能量分配规律的基础上,利用金相法检测的不同工艺条件下单道熔覆层的宏观参数,定量计算了L.C.Lim提出的单位质量熔覆材料的比能和单位时间实际输入的比能两个重要参数,并系统地分析了影响因素。在激光参数恒定的条件下,单位质量熔覆材料的比能随送粉速率的增大而减小;单位时间实际输入的比能随扫描速度的增加而减小。对单位质量熔覆材料的比能随扫描速度的变化出现最小值的现象给出了合理的解释。为进一步研究熔覆层的凝固行为、显微组织与工艺参数的关系奠定了理论基础。  相似文献   

10.
唐敏  汪力  陈志国  魏祥 《激光与红外》2024,54(5):718-724
采用激光熔覆技术在65Mn钢表面熔覆FeW B三元硼化物熔覆层。通过单道熔覆与单层多道熔覆实验,探究激光功率、扫描速度、送粉速率、搭接率对熔覆层质量的影响,获得优化激光工艺参数组合。并通过光学显微镜、X射线衍射仪和维氏硬度计对熔覆层进行分析。结果表明:工艺参数对熔池高度与熔池宽度的影响程度由小到大排列为:送粉速率、扫描速度、激光功率,对维氏硬度的影响程度由小到大排列为:扫描速度、送粉速率、激光功率。获得的最优工艺参数组合为:激光功率800W,扫描速度3mm/s,送粉速率4 g/min,搭接率50。此时熔覆层的维氏硬度均值为7579 HV,是基材的35倍。熔覆层与基材冶金结合良好,其微观组织由枝状晶、胞状晶和柱状晶组成。  相似文献   

11.
研究了高温镍基合金增材制造过程工艺参数与熔覆形貌、质量之间的关系。首先,利用ANSYS分析软件,采用APDL编程和生死单元技术在45#钢表面建立Inconel718激光熔覆模型,通过比较数值模拟和试验结果得到的熔池尺寸,从而验证模型的准确性,以减少后续的试验成本。然后,以熔覆层质量(成形系数)为指标,利用回归正交试验设计建立一次回归方程,研究工艺参数对熔覆层质量的影响次序,依次为激光功率、送粉速率、扫描速度。由方差分析可知,多因素交互作用对熔覆层质量影响不显著,而激光功率和送粉速率对熔覆质量影响最显著。因此,设计单因素试验分析其对熔覆层硬度、稀释率以及熔覆形貌的影响规律。通过方差分析预测最优方案为激光功率1200 W、扫描速度23 mm/s、送粉速率20 g/min,其与试验得到的结果一致,并对最优参数进行多道搭接试验验证,发现其组织致密细小,熔覆层与基体有良好的冶金结合性,该研究对后续的实践生产工作有一定的指导作用。  相似文献   

12.
27SiMn钢液压支架在恶劣的工作条件下长期使用后,其表面容易形成腐蚀,磨损和疲劳损坏等缺陷。为提升其使用寿命,本文利用宽带激光熔覆技术在27SiMn钢表面进行制备铁基涂层的实验研究。基于控制变量的方法来依次调整激光功率、送粉速度、载气流量及扫描速度开展单道单因素熔覆试验,并以表面粗糙度为熔覆层质量评价指标初选工艺参数。基于单因素试验进一步开展4因素3水平正交试验,终选显微硬度为熔覆层质量评价指标。利用极差分析考察数据发现扫描速度对熔覆层显微硬度影响最大,其后依次为激光功率、载气流量和送粉速度,最优工艺参数为熔覆处在激光焦点位置且激光功率、送粉速度、在其流量和扫描速度分别为4000 W、2.50 rpm、6.9 L/min和600 rpm。同时对熔覆层进行了摩擦磨损试验,分析了摩擦因素、磨损率及磨损形貌,验证了工艺参数优化的可行性。最终,熔覆层平均硬度较基体提升2.2倍,磨损率较基体提升27%。工艺参数优化能够实现铁基合金粉末熔覆层表面硬度及耐磨性的显著提升,对熔覆修复27SiMn液压支架大有帮助。  相似文献   

13.
以液压立柱材料45钢为基体,316不锈钢粉末为熔覆材料,采用不同的工艺参数在基材表面进行激光熔覆试验,制备316不锈钢涂层;然后利用FANUC数控机床对不锈钢涂层进行车削加工,采用数字化测试技术对车削成形试样熔覆层的表面宏观形貌、切屑形态、表面粗糙度、圆柱度、洛氏硬度、显微组织等进行研究,综合分析45钢表面激光熔覆316不锈钢涂层的车削加工性能,优选出最佳的激光熔覆工艺参数.在激光功率为800 W、送粉速率为0.28 g/s、轴向进给速度为0.110 mm/s的最佳熔覆工艺参数下,熔覆层的表面宏观形貌和切屑形态最佳,车削后熔覆层的表面粗糙度最小,圆柱度最高,且熔覆层的硬度值可达到40.3 HRC,内部显微组织呈细化趋势.45钢表面激光熔覆316不锈钢涂层耦合车削加工技术为液压立柱材料45钢的高质量修复和再利用提供了重要的参考价值.  相似文献   

14.
研究"三分光束"光内同轴送丝激光熔覆各工艺参数的工艺区间及参数与熔覆层几何形貌映射关系。首先,采用单因素实验方法研究激光功率、扫描速度、送丝速度、离焦量四个工艺参数的工艺区间;其次,以熔覆层的高度、宽度、横截面积作为熔覆层几何形貌的量化指标;最后,分别建立神经网络模型和二次回归模型实现熔覆工艺参数和熔覆层形貌量化指标之间映射关系的预测。基于单道单因素实验,当激光功率介于1 300~1 700 W,扫描速度介于3~7 mm/s,送丝速度介于9~15 mm/s,离焦量介于-2.5^-1.5 mm时能获得液桥过渡熔覆质量较好的单道。在对测试样本数据的预测中,在置信度85%情况下,BP神经网络模型对熔覆层高度、宽度、横截面积的预测精度分别为100%, 100%, 93.33%,均方根误差分别为0.21, 0.07, 0.24;二次回归模型的精度分别为100%, 66.67%, 73.33%,均方根误差分别为0.21, 0.13, 0.28。结论说明二次回归模型中变量的交叉项未能拟合送丝熔覆多变量耦合的非线性过程,而BP神经网络得到较好的预测结果。  相似文献   

15.
激光熔覆技术应用于轴类零件表面修复的实验研究   总被引:6,自引:1,他引:6  
本文通过两种铁基合金粉末对45号钢调质态棒料,用宽带(矩形光斑)激光光束,以不同的工艺参数,按同步供料法分别进行激光熔覆修复实验;并对实验结果进行分析比较,选出最佳工艺参数及熔覆层数;研究熔覆层和基材的冶金结合程度;分析在一定送粉率下,激光熔覆工艺参数的改变,熔覆层质量和显微组织变化情况;使之为工业应用奠定基础.  相似文献   

16.
采用同轴送粉与压片预置激光熔覆工艺制备NiCoCrAlY涂层, 对两种激光熔覆工艺粉末利用率、涂层稀释率、熔覆层硬度及熔覆层微观组织形貌进行了比较。结果表明, 在涂层界面能形成良好冶金结合的优选工艺参数条件下, 同轴送粉激光熔覆粉末利用率和加工参数密切相关, 最高不超过0.4, 而压片预置激光熔覆粉末利用率高于0.9; 同轴送粉激光熔覆制备涂层熔合区为垂直于界面的柱状晶, 上部为均匀的等轴晶, 压片预置激光熔覆涂层的枝状晶贯穿整个涂层; 但是压片预制熔覆涂层的硬度略低于同轴送粉熔覆涂层。  相似文献   

17.
基于Nd:YAG的激光熔覆工艺参数的优化   总被引:1,自引:0,他引:1  
为了获得平整的熔覆层表面质量,采用正交试验方法对316L不锈钢激光熔覆工艺参数对熔覆层截面表面平整度的影响进行了实验研究,并获得了优化的工艺参数.研究结果表明:扫描速度及送粉量对表面平整度影响较大,其次是激光功率及载气流量;并对优化后的工艺参数进行了试验验证,得到了表面平整度为0.015mm的熔覆层表面,从而说明结果的可靠性.  相似文献   

18.
采用ANSYS有限元软件对K418高温合金激光熔覆过程中的温度场进行了计算,得到了激光熔覆层中心温度的变化规律.结果表明,熔覆层中心温度表现出明显的快速熔凝特征,熔覆层中心温度与激光功率成正比,与扫描速度成反比.计算结果为优化K418高温合金激光熔覆工艺参数提供了理论依据.  相似文献   

19.
为建立工艺参数与熔覆层几何特征的关系模型,分析了粉末在高斯光束中的吸热过程、有效利用率及基体熔化吸收的能量,推导出熔覆层儿何特征(熔覆层宽、熔覆层高、熔池深)数学模型.仿真结果表明:激光熔覆几何特征与工艺参数关系密切,其中熔覆层宽度与光束直径和送粉速率成正比;熔覆层高度与送粉速率成正比,与扫描速度成反比;熔池深度与激光功率成正比.这与实验获得的规律是一致的.  相似文献   

20.
发动机缸体在服役中会有外界粉尘颗粒伴随着柴油、汽油进入缸体内部,磨损并腐蚀破坏缸体表面,影响发动机的性能。为实现缸体表面的修复,采用输出光斑大小为15 mm×3 mm的宽带激光熔覆头对发动机缸体表面进行单道宽带激光熔覆修复试验。熔覆基体材料为42CrMo钢,熔覆粉末材料为Fe316L。研究激光功率、送粉速度、送气流量及扫描速度等参数对熔覆质量的影响以及各参数的影响权重,并求得最佳工艺参数为激光功率4 250 W,送粉速度3 r/min,送气流量5.1 L/min及扫描速度459 r/min,且在焦点处熔覆时,熔覆质量较高,熔覆层上表面粗糙度为2.19μm,熔覆层显微硬度为552.9 HV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号