首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
The effect of boron doped diamond (BDD) surface termination, immediately after cathodic and anodic electrochemical pre-treatments, on the electrochemical response of a BDD electrode in aqueous media and the influence of the different supporting electrolytes utilized in these pre-treatments on the final surface termination was investigated with [Fe(CN)6]4−/3−, as redox probe, by cyclic and differential pulse voltammetry and electrochemical impedance spectroscopy. The cyclic voltammetry results indicate that the electrochemical behavior for the redox couple [Fe(CN)6]4−/3− is very dependent on the state of the BDD surface, and a reversible response was observed after the cathodic electrochemical pre-treatment, whereas a quasi-reversible response occurred after anodic electrochemical pre-treatment. Differential pulse voltammetry in acetate buffer also showed that the potential window is very much influenced by the electrochemical pre-treatment of the BDD surface. Electroactivity of non-diamond carbon surface species (sp2 inclusions) incorporated into the diamond structure was observed after cathodic and anodic pre-treatments. Electrochemical impedance spectroscopy confirmed the cyclic voltammetry results and indicates that the BDD surface resistance and capacitance vary significantly with the electrolyte and with the electrochemical pre-treatment, caused by different surface terminations of the BDD electrode surface.  相似文献   

2.
Boron doped diamond (BDD) was synthesized under high pressure and high temperature using B-doped graphite intercalation compositions (GICs) as carbon sources. The electrochemical characteristics of high-pressure synthetic BDD powder electrodes were investigated by measuring the cyclic voltammetry curves and AC impedance spectrum. For the [Fe(CN)6]3−/4− redox couple, the electrode reaction process is reversible or quasi-reversible at the scan rates of 0.01-1.0 V/s. At the low scan rate the linear relation between peak current and square root of scan rate indicates that the electrode process was a diffusion-controlled mass transport process. The electrochemical behavior is similar to a planar electrode. With the increasing of the scan rate the electrode process is controlled by the mass transport plus kinetic process. AC impedance spectra exhibit the porous structure characteristic of BDD powder electrode.  相似文献   

3.
Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp3/sp2-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 Ω cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe2+/3+ and Fe(CN)64−/3− at N-doped DLC were sufficiently high. The redox reaction of Ce2+/3+ with standard potential higher than H2O/O2 were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN)63−/4− by surface oxidation is different from that at BDD. The rate of Fe(CN)63−/4− was not varied before and after oxidative treatment on N-doped DLC includes sp2 carbons, which indicates high durability of the electrochemical activity against surface oxidation.  相似文献   

4.
Direct electrochemistry of hemoglobin can be performed in acidic and basic aqueous solutions in the pH range 1-13, using stable, electrochemically active films deposited on a didodecyldimethylammonium bromide (DDAB) modified glassy carbon electrode. Films can also be produced on gold, platinum, and transparent semiconductor tin oxide electrodes. Hemoglobin/DDAB films exhibit one, two, and three redox couples when transferred to strong acidic, weak acidic and weak basic, and strong basic aqueous solutions, respectively. These redox couples, and their formal potentials, were found to be pH dependent. An electrochemical quartz crystal microbalance and cyclic voltammetry were used to study the in situ deposition of DDAB on gold disc electrodes and hemoglobin deposition on DDAB film modified electrodes. A hemoglobin/DDAB/GC modified electrode is electrocatalytically reduction active for oxygen and H2O2, and electrocatalytically oxidation active for S2O42− through the Fe(III)/Fe(II) redox couple. In the electrocatalytic reduction of S4O62−, S2O42−, and SO32−, and the dithio compounds of 2,2′-dithiosalicylic acid and 1,2-dithiolane-3-pentanoic acid, the electrocatalytic current develops from the cathodic peak of the redox couple at a potential of about −0.9 V (from the Fe(II)/Fe(I) redox couple) in neutral and weakly basic aqueous solutions. Hemoglobin/DDAB/GC modified electrodes are electrocatalytically reduction active for trichloroacetic acid in strong acidic buffered aqueous solutions through the Fe(III)/Fe(II) redox couple. However, the electrocatalytic current developed from the cathodic peak of the redox couple at a potential of about −0.9 V (from the Fe(II)/Fe(I) redox couple) in weak acidic and basic aqueous solutions. The electrocatalytic properties were investigated using the rotating ring-disk electrode method.  相似文献   

5.
This paper is concerned with the study of the influence of electrochemical pre-treatments on the behavior of highly boron doped diamond electrodes. Anodic and cathodic preconditioning, performed during 10 s either with 10 4 A/cm 2 (10 3 C cm 2) or 10 1 A/cm 2 (1 C cm 2), has been studied. Cyclic voltammetry at as-deposited, anodically and cathodically treated electrodes, in presence of 2 redox couples serving as electrochemical probes is analyzed in the light of the surface characterization given by XPS chemical analysis. Ce4+/3+ redox couple in 0.5 M H2SO4 medium and Fe(CN)63−/4− redox couple in 0.1 M KOH medium, have been studied before and after the different treatments. The results of Mott–Schottky plots and current voltage curves are reported and show that the electrochemical response of BDD electrodes is very dependent on the current density involved in the electrochemical preconditioning. The modification of surface bond termination – either hydrogen or oxygen – studied by XPS analyses is also strongly dependent on electrochemical pre-treatment. In particular, it is evidenced that the most important conversion of surface functionalities from hydrogen to oxygen is obtained when the anodic treatment is performed with the smallest current density. Finally, a correlation between surface terminations and charge transfer is evidenced.  相似文献   

6.
In this work we briefly review the theoretical basis for the electrochemical rectification in mediated redox reactions at redox polymer modified electrodes. Electrochemical rectification may have two distinct origins. It is either caused by a slow kinetics of the reaction between the external redox couple and the mediator or it is originated by a slow electronic transport within the film under an unfavorable thermodynamic condition. We show experimental results for the redox mediation reaction of poly(o-aminophenol) (POAP) on the Fe2+/3+ and on the Fe(CN)63−/4− redox couples in solution that prove the proposed mechanisms of electrochemical rectification.  相似文献   

7.
Electrochemical behavior of tetrabutylammonium salts containing tetrafluoroborate (BF4) and hexafluorophosphate (PF6) anionic species in different non-aqueous solvents had been investigated on glassy carbon (GC), boron-doped diamond (BDD) and Pt electrodes. Though both BF4 and PF6 ionic species are considered to be inert, they are found to undergo electrochemical oxidation only on GC electrode rather than BDD and Pt as found out from their anodic peaks in linear sweep and cyclic voltammograms (LSV and CV). The voltammetric peak is influenced by the sweep rate as well as by the concentration of the ionic species and the electron transfer process appears to be diffusion controlled one. The formation of an inhibitory C-F film on the electrode surface during anodic polarization either by potentiostatic or potentiodynamic techniques was clearly established by X-ray photoelectron spectroscopy (XPS) analysis and the charge transfer resistance (θ) is higher under latter conditions than the former. The inhibitory effect of this surface film towards the electron transfer reaction of Fe(CN)6]4−/[Fe(CN)6]3− redox couple using impedance technique reveals that among the high permittivity non-aqueous solvents investigated in this work, CH3CN shows maximum θ value and produces C-F film of optimum thickness than the others. A direct correlation was also found out from the plot of θ versus peak potential Ep and peak current density (ip) obtained from LSV. The mechanism of film formation on GC electrode and the absence of such phenomenon on BDD were explained from the product analysis using 19F nuclear magnetic resonance (NMR) spectra resulting from the constant current electrolysis of BF4 and PF6 ionic species on both electrodes in CH3CN medium.  相似文献   

8.
In this work, the ion exchange characteristics of poly(butyl viologen) (PBV) thin films on a platinum electrode has been investigated by cyclic voltammetric (CV) scans. Since ferrocyanide anions (Fe(CN)64−) were added during the polymerization of the PBV thin-film for its stability, Fe(CN)64− could form charge transfer complex with monomer and co-deposited with polymer. Scanning electrochemical microscopy (SECM) was used to probe the released Fe(CN)64− ions from PBV film with Os(bpy)3Cl2 as a mediator for the approaching process in 0.5 M KCl medium. Mass changes during the redox process of the film were also monitored in-situ by electrochemical quartz crystal microbalance (EQCM). The ion exchange and transport behavior was observed during CV cycling of the film of the SECM and EQCM. The insertion and extraction of anions were found to be potential-dependence. Moreover, the decrease in tip current of released Fe(CN)64− with increasing cycle number accounted for the ion exchange between Fe(CN)64− and Cl in the KCl electrolyte. However, the Fe(CN)64−/Fe(CN)63− redox couple was found to be highly stable between 0.0 and 0.5 V (vs. Ag/AgCl/saturated KCl) in the phosphate buffer solution. Therefore, the electrochemical property of Fe(CN)64−/Fe(CN)63− redox couple was studied at different scan rates using CV technique. The peak currents were directly proportional to the scan rate as predicted for a surface confined diffusionless system. The surface coverage (Γ) and the concentration of Fe(CN)64− were determined to be 1.88 × 10−8 mol/cm2 and 0.641 mol/dm3, respectively. By neglecting cations incorporation during redox reaction of the PBV film and also based on the results obtained from energy-dispersive X-ray spectroscopy for the films of as-deposited, reduced and oxidized states, an ion exchange mechanism was proposed.  相似文献   

9.
Platinum nanoparticles (n-Pt), over-grafted with 2-thiophenecarbonyl chloride are assembled on gold electrodes, by the Langmuir Blodgett (LB) technique using behenic acid (BHA) as promoting agent. These layers are electrochemically active without any preliminary activation. The [Fe(CN)6]3−/4− redox couple was used as electrochemical probe. This paper reports on the influence of the number of deposited LB layers, and the n-Pt density on the electrochemical response. n-Pt density was modified by the change of the “BHA/n-Pt” ratio. Cyclic voltammograms of “[Fe(CN)6]3−/4−” were observed whatever the coating conditions. As soon as the first layer was deposited the electrochemical response was associated to the n-Pt coverage, its response slightly increased up to a steady state for five or seven layers. As expected, the increase of the Pt density favored the increase of the current density. XPS analysis performed before and after electrochemical cycling showed that 4-mercaptoaniline capped platinum nanoparticles, and their over grafting were chemically and electrochemically stable. Analysis of influence of the number or the n-Pt density of the layers showed that the electrochemically active part of LB electrodes was provided by the last layer plus a part of the underlying one.  相似文献   

10.
Boron-doped diamond (BDD) is a promising electrode material for use in the spectro-electrochemical study of redox proteins and, in this investigation, cyclic voltammetry was used to obtain quasi-reversible electrochemical responses from two blue copper proteins, parsley plastocyanin and azurin from Pseudomonas aeruginosa. No voltammetry was observed at the virgin electrodes, but signals were observed if the electrodes were anodised, or abraded with alumina, prior to use. Plastocyanin, which has a considerable overall negative charge and a surface acidic patch which is important in forming a productive electron transfer complex with its redox partners, gave a faradaic signal at pre-treated BDD only in the presence of neomycin, a positively charged polyamine. The voltammetry of azurin, which has a small overall charge and no surface acidic patch, was obtained identically in the presence and absence of neomycin. Investigations were also carried out into the voltammetry of two site-directed mutants of azurin, M64E azurin and M44K azurin, each of which introduce a charge into the protein's surface hydrophobic patch. The oxidizing and cleaning effects of the BDD electrode pre-treatments were studied electrochemically using two inorganic probe ions, Fe(CN)63− and Ru(NH3)63+, and by X-ray photoelectron spectroscopy (XPS). All of the electrochemical results are discussed in relation to the electrostatic and hydrophobic contributions to the protein/diamond electrochemical interaction.  相似文献   

11.
Nitrogenated nanocrystalline diamond thin-film electrodes with controlled conductivity are grown from microwave- or arc-plasma in CH4-Ar-H2-N2 gas mixtures. Their electrochemical behavior is studied using cyclic voltammetry and electrochemical impedance spectroscopy techniques. It is concluded from Mott-Schottky plots that the studied material has n-type conductance; the donor concentration is estimated. The character of electrode behavior is controlled by the degree of nitrogenation of the material. In particular, with the increasing of nitrogen concentration in the feeding gas (0-25%) supplied to plasma-chemical reactor, the potential window in the supporting electrolyte (2.5 M H2SO4) becomes somewhat narrower, the reversibility of electrochemical reactions in the [Fe(CN)6]3−/4− redox couple becomes more pronounced. Kinetic parameters of redox reactions in this couple are determined. By and large, with the increasing of the nitrogenation the electrochemical behavior of “poor conductor” gives way to that of metal-like conductor.  相似文献   

12.
Charge transfer on boron doped diamond (BDD) electrodes was studied by cyclic voltammetry and electrochemical impedance spectroscopy. The diamond films of 5 μm thickness and boron content between 200 ppm and 3000 ppm were prepared by the hot filament CVD technique on niobium substrate and mounted in a Teflon holder as rotating disk electrodes. The electrochemical measurements were carried out in aqueous electrolyte solutions of 0.5 M Na2 SO 4 + 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]. Significant deviation in the redox behaviour of BDD and active Pt electrodes was indicated by a shift of the peak potentials in the cyclic voltammograms with increasing sweep rate and lower limiting diffusion current densities under rotating disk conditions. In the impedance spectra an additional capacitive element appeared at high frequencies. The potential and rotation dependence of the impedance spectra can be described quantitatively in terms of a model based on diffusion controlled charge transfer on partially blocked electrode surfaces. Direct evidence for the non-homogeneous current distribution on the diamond surface was obtained by SECM measurements.  相似文献   

13.
An ionic liquid (IL, 1-(methylcarboxylic acid)-3-octylimidazolium-bis (trifluoromethylsulfonyl)imide) was covalently coupled onto a boron-doped diamond (BDD) surface through an esterification reaction. The resulting surface was characterized by X-ray photoelectron spectroscopy, water contact angle and electrochemical measurements. Selective electron transfer towards positively and negatively charged redox species was recorded. While the presence of Fe(CN)64− could be detected on the IL-modified BDD interface, no surface-immobilized Ru(NH3)63+ was recorded. The IL-modified BDD electrode showed in addition changes in surface wettability when immersed into aqueous solution containing different anions.  相似文献   

14.
Reversible charge transfer on boron doped diamond (BDD) electrodes was studied using cyclic voltammetry and electrochemical impedance spectroscopy. Polycrystalline diamond films of 5 μm thickness with 200 and 3000 ppm boron content were prepared by chemical vapour deposition on niobium substrate. The samples were mounted in a Teflon holder and used as rotating disk electrodes (RDE) with rotation frequencies between 0 and 4000 rpm. The electrochemical measurements were carried out in aqueous electrolyte solutions of 0.5 M Na2SO4 + 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] and 0.1 M KCl + 5 mM [Ru(NH3)6]Cl2/[Ru(NH3)6]Cl3. The electrochemical redox behaviour of the BDD electrodes was found to differ significantly from that of an active Pt electrode. The deviations are indicated by a large peak potential difference and a shift of the peak potentials in cyclic voltammograms with increasing sweep rate. At rotating electrodes lower limiting current densities are found and the impedance diagrams exhibit an additional capacitive impedance element at high frequencies. The results are described quantitatively by an impedance model which is based on partial blocking of the diamond surface.  相似文献   

15.
The electrochemical behavior of FeCp2+/FeCp2 (Cp, cyclopentadienyl), FeCl4/FeCl42−, FeBr4/FeBr42− and Fe(CN)63−/Fe(CN)64− couples was studied in the hydrophobic room-temperature ionic liquids based on bis(trifluoromethylsulfonyl)imide (TFSI) with 1-n-butyl-1-methylpyrrolidinium (BMP+) and other quaternary ammonium cations. The cyclic voltammetric data indicated that these complexes were stable in BMPTFSI and that the redox reactions between trivalent and divalent iron species of these complexes are electrochemically reversible. The diffusion coefficients of these complexes were found to be affected mainly by the size of the species. On the other hand, the redox potential of Fe(CN)63−/Fe(CN)64− couple depended on organic cations reflecting the difference in the acceptor properties of the organic cations.  相似文献   

16.
Scale-up of boron-doped diamond (BDD) anode system is critical to the practical application of electrochemical oxidation in bio-refractory organic wastewater treatment. In this study, the scale-up of BDD anode system was investigated on batch-mode electrochemical oxidation of phenol simulated wastewater. It was demonstrated that BDD anode system was successfully scaled up by 121 times without performance deterioration based on the COD and specific energy consumption (Esp) models in bath mode. The COD removal rate and Esp for the scaled-up BDD anode system through enlarging the total anode area while keeping similar configuration, remained at the similar level as those before being scaled up, under the same area/volume value, current density, retention time and wastewater characteristics. The COD and Esp models used to describe the smaller BDD anode system satisfactorily predicted the performance of the scaled-up BDD anode system. Under the suitable operating conditions, the COD of phenol simulated wastewater was reduced from 540 mg l−1 to 130 mg l−1 within 3 h with an Esp of only 34.76 kWh m−3 in the scaled-up BDD anode system. These results demonstrate that BDD anode system is very promising in practical bio-refractory organic wastewater treatment.  相似文献   

17.
The electrochemical behaviour of reversible charge transfer reactions on boron doped diamond (BDD) was studied by cyclic voltammetry and electrochemical impedance spectroscopy using rotating disc electrodes under defined convection. Diamond films of 5 m thickness with doping levels of 200, 3000 and 6000 ppm were prepared by hot filament chemical vapour deposition on niobium substrate. The electrochemical measurements were carried out on BDD electrodes in deaerated 0.5 M Na2SO4 + 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] solution at rotation frequencies 0 < f rot < 4000 rpm. Comparative measurements were carried out on an active Pt electrode. The BDD electrodes exhibit distinct irreversibilities indicated by a larger peak potential difference in the cyclic voltammograms, lower diffusion limiting current densities and an additional impedance element at high frequencies. Mechanical polishing with carbon fleece and SiC paper strongly affects the irreversible behaviour of the BDD electrodes. The experimental results are explained by a partial blocking of the diamond surface with reversible charge transfer at active sites. The impedance spectra are analysed quantitatively using a transport impedance model for reversible reactions on partially blocked electrode surfaces.  相似文献   

18.
Boron-doped diamond (BDD) thin film surfaces were modified by brief plasma treatment using various source gases such as Cl2, CF4, Ar and CH4, and the electrochemical properties of the surfaces were subsequently investigated. From X-ray photoelectron spectroscopy analysis, Cl and F atoms were detected on the BDD surfaces after 3 min of Cl2 and CF4 plasma treatments, respectively. From the results of cyclic voltammetry and electrochemical AC impedance measurements, the electron-transfer rate for Fe(CN)63−/4− and Fe2+/3+ at the BDD electrodes was found to decrease after Cl2 and CF4 plasma treatments. However, the electron-transfer rate for Ru(NH3)62+/3+ showed almost no change after these treatments. This may have been related to the specific interactions of surface halogen (C-Cl and C-F) moieties with the redox species because no electrical passivation was observed after the treatments. In addition, Raman spectroscopy showed that CH4 plasma treatment of diamond surfaces formed an insulating diamond-like carbon thin layer on the surfaces. Thus, by an appropriate choice of plasma source, short-duration plasma treatments can be an effective way to functionalize diamond surfaces in various ways while maintaining a wide potential window and a low background current.  相似文献   

19.
Functionalized polypyrrole film were prepared by incorporation of (Fe(CN)6)4− as doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrochemical behavior of the (Fe(CN)6)3−/(Fe(CN)6)4− redox couple in polypyrrole was studied by cyclic voltammetry and double step potential chronoamperometry methods. In this study, an obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole/ferrocyanide films modified carbon paste electrode (Ppy/FCNMCPEs) was demonstrated by oxidation of ascorbic acid. It has been found that under optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such electrode occurs at a potential about 540 mV less positive than unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, kh′, were also determined by using various electrochemical approaches.The catalytic oxidation peak current showed a linear dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 4.5×10−4 to 9.62×10−3 M of ascorbic acid with a correlation coefficient of 0.9999. The detection limit (2σ) was determined as 5.82×10−5 M.  相似文献   

20.
We report the electrochemical characterization of chitosan films deposited at gold electrodes from an acidic solution at reducing potentials. Cyclic voltammetry was used to characterize the deposition and electroactivity of chitosan coated gold electrodes. Chitosan films were found to deposit at gold electrodes at potentials more negative than −1.0 V versus Ag/AgCl, a potential associated with the onset of water reduction and increase in pH near the electrode. The chitosan films are electrochemically inactive; similar background charging currents are observed at bare gold and chitosan coated electrodes. The chitosan films are permeable to both cationic [Ru(NH3)63+/2+] and anionic [Fe(CN)63−/4−] redox couples, but anionic complexes are retained in the chitosan film. Semiintegral analysis was used to examine adsorbed redox species at the chitosan coated electrode surface. Electrochemical parameters, including apparent diffusion coefficients for the redox probes at the electrodeposited chitosan modified electrodes are presented and are comparable to values reported for cast chitosan films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号