首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox properties of some alkyl radicals, which are important in atom transfer radical polymerization both as initiators and mimics of the propagating radical chains, have been investigated in CH3CN by an indirect electrochemical method based on homogeneous redox catalysis involving alkyl halides (RX) and electrogenerated aromatic or heteroaromatic radical anions (D). Dissociative electron transfer between RX and D yields an intermediate radical (R), which further reacts with D either by radical coupling or by electron transfer. Examination of the competition between these reactions, which depends on ED/D−°, allows determination of the standard reduction potential of R as well as the self-exchange reorganization energy λR/R. The standard reduction potentials obtained for the radicals CH2CN, CH2CO2Et and CH(CH3)CO2Me are −0.72 ± 0.06, −0.63 ± 0.07 and −0.66 ± 0.07 V vs. SCE, respectively. Quite high values of λR/R (from 122 to 164 kJ mol−1) were found for all radicals, indicating that a significant change of structure accompanies electron transfer to R.  相似文献   

2.
Model experiments are reported where proton beams delivered by the cyclotron located at CERI (CNRS-Orléans) are used for irradiating AISI 316L/water and Au/water high purity interfaces with 6 MeV protons. The free exchange potentials at the interfaces are recorded as a function of time at room temperature in situ before, under, and after proton irradiation. The evolutions are compared to those calculated for the Nernst potentials associated with the radiolytic RedOx couples. It is shown how the comparison gives evidence that five radiolytic species - O2, H2O2, HO2, HO2 and O2 - exchange electrons at the Au interfaces in a range of dose rates that vary over three orders of magnitudes, i.e. 0.0048 < dr(107 Gy h−1) < 4.8. The balance between the electron exchanges at Au interfaces is adjusted by the RedOx reactions associated with the above species. The free exchange potential reaches the same steady value for Au and AISI 316L interfaces irradiated at high doses, ≥2.5 × 107 Gy, (0.020 ± 0.025) V versus NHE. Such low values are the first ones to be reported. The HO2 and O2 radical disproportionations play a key role and control the potential at the interfaces under 6 MeV proton flux. This role is generally mostly overlooked for gamma irradiation.  相似文献   

3.
D. Fu 《Electrochimica acta》2010,55(11):3787-18529
The electrochemical reduction and oxidation kinetics of hydrogen peroxide on γ-FeOOH films chemically deposited on indium tin oxide substrates were studied over the pH range of 9.2-12.6 and the H2O2 concentration range of 10−4 to 10−2 mol dm−3. The Tafel slopes for H2O2 reduction and oxidation obtained from polarization measurements are 106 ± 4 and 93 ± 15 mV dec−1, respectively, independent of pH and the concentration of H2O2. Both the reduction and oxidation of H2O2 on γ-FeOOH have a first-order dependence on the concentration of molecular H2O2. However, for the pH dependence, the reduction has an inverse first-order dependence, whereas the oxidation has a first-order dependence, on the concentration of OH. For both cases the electroactive species is the molecular H2O2, not its base form, HO2. Based on these observations, reaction kinetic mechanisms are proposed which involve adsorbed radical intermediates; HOOH and HO for the reduction, and HO2H+, HO2, and O2 for the oxidation. These intermediates are assumed to be in linear adsorption equilibria with OH and H+ in the bulk aqueous phase, respectively, giving the observed pH dependences. The rate-determining step is the reduction or oxidation of the adsorbed H2O2 to the corresponding intermediates, a reaction step which involves the use of FeIII/FeII sites in the γ-FeOOH surface as an electron donor-acceptor relay. The rate constant for the H2O2 decomposition on γ-FeOOH determined from the oxidation and reduction of Tafel lines is very low, indicating that the γ-FeOOH surface is a very poor catalyst for H2O2 decomposition.  相似文献   

4.
The metal complex formation and the electrical properties of amorphous solid polymer electrolytes, based on poly(butadiene-acrylonitrile) copolymer (PBAN) and CoCl2, have been studied over the homogeneity region of the system limited by the CoCl2 concentration of 1.89 mol kg−1. It has been found that ionic conductivity is carried out by the unipolar anion transfer at lower CoCl2 concentrations (up to 0.10 mol kg−1). As the CoCl2 concentration increases, electronic conductivity appears in addition to ionic conductivity, and the former becomes dominant, starting from 0.38 mol kg−1. It has been shown that the nature of charge carriers is determined by the composition of metal complexes formed by CoCl2 and the macromolecular solvent PBAN. At lower concentrations, the [Co2L2Cl4]0 dimers are the predominant species (L being macromolecule side groups CN), and their dissociation is followed by the formation of mobile Cl anions and immobile binuclear [Co2Cl3]+ complexes. As CoCl2 concentration increases, polynuclear [ConL2Cl2n]0 (n > 2) complexes appear (L being CN and CC groups of PBAN). Specific features of chemical bonds in π-complexes of transition metals result in the appearance of electronic charge carriers. The abrupt increase in conductivity observed at the highest CoCl2 concentration is connected with the formation of a percolation network of polynuclear [ConL2Cl2n]0 complexes.  相似文献   

5.
1,2,3-Triketohydrindene hydrate (NHy) shows well-defined redox electrochemistry in the formation of monoanionic radical (NHy) and dianion (NHy2−) in nitrogen saturated aprotic solvents such as acetonitrile and dimethylsulfoxide. Cyclic voltammetry reveals that in an oxygen-saturated solution of DMSO, the oxidation peak of superoxide anion (O2) at −0.7 V versus Ag/AgCl wire electrode, decreases systematically with increasing NHy concentration. The similar behaviour is observed in the rotating disk voltammetry. On Pt disk, oxygen is reduced to O2 at a constant potential of −0.8 V and at Pt ring, O2 is oxidised to oxygen and the corresponding limiting current plateau in the ring voltammogram is decreased linearly as [NHy] is increased. In aqueous solutions, NHy is found to exhibit completely different redox chemistry due to its structural changes and hence showed no favourable redox potentials for efficient quenching of O2.  相似文献   

6.
The WO3 films were grown in 0.1 M HClO4 aqueous solution, at different formation potentials (Ef) in the range of 2.0-7.0 V versus sce, on W electrode. The anion diffusion coefficient (DO) of WO3 films was calculated from EIS spectra, following the surface charge approach (at high-field limit approximation), the Point Defect Model and the Mott-Shottky analysis. Among the parameters necessary to evaluate DO, the half-jump distance (a) is very relevant, given that a small variation in a has a great impact in the calculation of DO. In this work, it is proposed the half-jump distance (a) should be evaluated from spectroscopic data (available in the literature). The value of a (∼1.9 Å) is taken from lattice constants of a-WO3 (amorphous-WO3), with different values of N (coordination number), and the lattice constants of m-WO3 (monoclinic-WO3). The calculated value of DO was ∼3 × 10−17 cm2/s.  相似文献   

7.
Rotenone, a widely used botanical insecticide submitted to strong restrictions regarding its environmental hazards, was studied as a target compound for electro-Fenton (EF) treatment in aqueous-acetonitrile mixture (70:30) of pH 3.0. In this system, the degradation of organic pollutants occurs by attack of hydroxyl radicals (OH) which are produced from the reaction of added ferrous catalyst (Fe2+) and hydrogen peroxide (H2O2) electrogenerated by oxygen reduction at carbon felt cathode. The degradative efficiency of EF system was comparatively studied versus anodic oxidation method (AO) in absence and presence of H2O2. It was found that only EF is sufficiently powerful to induce fast and efficient mineralization of rotenone and its degradation intermediates.The mineralization of rotenone was found to depend largely on organic solvent type, metal ion catalyst, applied current and initial rotenone concentration. The best operative conditions are achieved using aqueous-acetonitrile mixture of pH 3.0 in the presence of 0.2 mM Fe2+ catalyst with a current intensity of 100 mA. Under these optimized conditions, 30 min were sufficient to completely degrade rotenone in 100 mL of a 20 mg L−1 solution. A nearly complete mineralization (∼96% of COD removal) was achieved after 8 h treatment.Rotenone removal kinetic was found to obey the pseudo-first order model and the absolute second order rate constant (kRot = 2.49 × 109 M−1 s−1) for the reaction between the substrate and OH was derived.HPLC-MS and HPLC-DAD analysis were applied to identify and follow the evolution of rotenone oxidation products. Three stable aromatic intermediates were observed and two of these were identified as 12aβ-hydroxyrotenone and hydroquinone. Subsequent attack of these intermediates by OH radicals leads to the formation of aliphatic carboxylic acids such as succinic, acetic, oxalic and formic, quantified by ion-exclusion chromatography.  相似文献   

8.
Electrochemical characterization on glassy carbon electrode (GCE) and reactivity with superoxide radical anion in aprotic medium of three new synthesized C4-phenolic-1, 4-dihydropyridines is reported.Voltammetry, coulometry, controlled-potential electrolysis (CPE), UV-vis spectroscopy, 1H NMR techniques were employed for the characterization of title compounds.The oxidation mechanism involves initially an oxidation process on the phenol moiety with the formation of the corresponding quinone followed by a second one affecting the dihydropyridine ring to give the pyridine derivative. Both processes appeared irreversible in character.Cyclic voltammetry was used to generate O2 by reduction on GCE of molecular oxygen in DMSO. The reactivity of DHPs towards O2 was directly measured by the anodic current decay of the radical in the presence of increasing concentration of tested 1,4-dihydropyridines and compared with the reaction of the reference antioxidant, Trolox. The linear correlations obtained between the anodic current of O2 and compound concentrations in the range between 0.01 mM and 1.00 mM allowed the determination of both the DHP antioxidant index (AI) and the concentrations needed to consume 50% of O2. Synthesized C4-phenolic 1,4-dihydropyridines exhibited significant scavenging capacity towards superoxide radical anion higher than Trolox and tested commercial 1,4-dihydropyridines.  相似文献   

9.
K. Jurewicz  K. Babe?  S. Delpeux 《Carbon》2006,44(12):2368-2375
Catalytic multi-walled carbon nanotubes were modified by KOH activation at 800 °C and/or ammoxidation at 350 °C, and the effect of these treatments on the physicochemical and electrochemical properties was investigated. Whereas texture is moderately changed by ammoxidation, the chemical composition is significantly modified due to the formation of various nitrogen containing groups. The influence of nitrogenated functionality (pyridine, pyridone, NH) on charge accumulation is considered in full electrochemical capacitors, as well as in positive and negative electrodes separately, using acidic (4 mol L−1 H2SO4) and alkaline (7 mol L−1 KOH) electrolytes. The presence of nitrogen in the carbon network, especially in the form of pyridone/pyrrolic (N5) and/or pyridine (N6) groups, affects the electron density and enhances the charge affinity of the carbon material. It seems that the nitrogen groups improve particularly the capacitance performance of the negative electrode operating in alkaline medium. Besides the nitrogenated groups, the oxygenated functionality plays also an important role for the ammoxidized nanotubes. Generally, a few-fold increase of capacitance was observed in the N-enriched carbon nanotubular samples. Apart of this capacitance improvement, the presence of nitrogen in the carbon network limits significantly the leakage current and diminishes the self-discharge of supercapacitors.  相似文献   

10.
In this study we report the characterization of a prototype solid-state electrochromic device based on poly(ethylene oxide) (PEO)/siloxane hybrid networks doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The polymer networks prepared, designated as di-ureasils and represented as d-U(2000), were produced by a sol-gel procedure and are composed of a siliceous framework to which both ends of polyether chains containing about 40 CH2CH2O units are covalently bonded through urea linkages. Samples with compositions of 200 ≥ n ≥ 0.5 (where n is the molar ratio of CH2CH2O to Li+) were characterized by thermal analysis, complex impedance measurements and cyclic voltammetry at a gold microelectrode. Electrolyte samples were obtained as self-supporting, transparent, amorphous films and at room temperature the highest conductivity was observed with the d-U(2000)35LiTFSI composition (3.2 × 10−5 Ω−1 cm−1). We report the results of preliminary evaluation of these polymer electrolytes as multi-functional components in prototype electrochromic displays. Device performance parameters such as coloration efficiency, optical contrast and image stability were also evaluated. The electrolytes with n > 8 presented an optical density above 0.56 and display assemblies exhibited good open-circuit memory and stable electrochromic performances.  相似文献   

11.
12.
The potential-dependent chemical reaction of perchloroethylene (PCE) on copper in neutral noncomplexing aqueous media is explored by means of surface-enhanced Raman spectroscopy (SERS), linear sweep voltammetry and preparative electrolysis at controlled potential. Voltammetric peaks associated with copper oxide reduction in Na2SO4 solution in the presence and the absence of Cl are correlated with simultaneously acquired SER spectra. Perchloroethylene undergoes a dechlorination process at potentials at E ≤ −0.3 V vs. Ag/AgCl/KCl (3 M), as shown by the emergence of an intense CuCl stretching band at 290 cm−1 and a CH stretching band together with the presence of Cl in the catholyte. In the potential region between 0 and −0.9 V vs. Ag/AgCl/KCl (3 M) a broad band assigned to CC structures is observed in the triple-bond region (∼1900 cm−1, FWHM = 180 cm−1). In addition, dichloroethylene (DCE) is detected (but not trichloroethylene (TCE)) in this potential region during preparative electrolysis. At potentials lower than −1 V vs. Ag/AgCl/KCl (3 M) carbon residues are the main product, detected on the copper surface by SERS (and confirmed by XPS), whereas in solution higher levels of dichloroethylene and trichloroethylene are detected with a DCE/TCE ratio below 1.  相似文献   

13.
Superoxide radical (O2) was both electrochemically generated and detected at room temperature. In situ ESR spectroelectrochemistry with spin trapping was used for the radical detection. That is, the O2 radical was obtained in a DMSO solution under cyclic voltammetry conditions as soon as the potential of the dioxygen electroreduction was reached. This radical reacted then with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) spin-trap reagent present in solution to form the DMPO-OOH adduct. The hyperfine coupling constants determined for the adduct were aN = 1.285 mT, and in accord to those reported in literature.  相似文献   

14.
K. Daub 《Electrochimica acta》2010,55(8):2767-350
The effect of ionizing radiation on steel corrosion is an important materials issue in nuclear reactors. In the presence of ionizing radiation water decomposes into both oxidizing and reducing species (e.g., OH, H2O2, O2) whose net interactions with steels are not fully understood. The effect of radiation on the corrosion kinetics of carbon steel has been studied at pH 10.6 and room temperature, using electrochemical and chemical speciation analyses. The present study investigates the effect of γ-radiation on carbon steel corrosion and compares it with that of chemically added H2O2, which is considered to be the key radiolytically produced oxidant at room temperature. Various oxide films were pre-grown potentiostatically on carbon steel electrodes, and then exposed to either γ-radiation at a dose rate of ∼6.8 kGy h−1 or to H2O2 in a concentration range of 10−6 to 10−2 M. The corrosion kinetics were studied by monitoring the corrosion potential (ECORR), and periodically performing linear polarization (LP) and electrochemical impedance spectroscopy (EIS) measurements.  相似文献   

15.
16.
17.
Electrochemical oxidation of Inosine has been studied in the phosphate buffers of pH range 3.3-10.9 at pyrolytic graphite electrode. In the entire pH range a single well-defined oxidation peak (Ia) was observed, when the sweep was initiated in the positive direction. In the reverse sweep no cathodic peak was obtained. The peak potential of the oxidation peak was dependent on pH and shifted to less positive potential with increase in pH. The kinetics of the UV absorbing intermediate was followed spectrophotometrically and the decay occurred in a pseudo first order reaction having k values in the range 0.50-0.92 × 10−3 s−1 in the entire pH range studied. The value of n was found to be 2.95 ± 0.3. The products of oxidation were silylated and characterized by using GC-Mass. Two tetramers having CC, CN, NN, CON and COOC linkages were identified. A plausible mechanism for the electrooxidation of Inosine has been suggested.  相似文献   

18.
19.
The electrochemical behavior of tris(4-bromophenyl)amine (TBPA) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was comparatively studied in room temperature ionic liquids (RTILs) containing 1-butyl-3-methylimidazolium cation [BMIm]+ and the anions BF4, PF6and CF3SO3. TEMPO showed a well-defined electrochemical reversibility with anodic to cathodic peak current ratio (Ia/Ic) equals to unity in all RTILs, at a glassy carbon electrode. In contrast, Ia/Ic ratio greater than unity was observed at all scan rates employed (10-1000 mV s−1) in cyclic voltammograms (CV) of TBPA in RTILs. Controlled-potential bulk electrolysis of TBPA in RTILs yielded a dark blue colored solution of monocation TBPA+, which is stable under nitrogen. Diffusion coefficient of TBPA+ cation was determined in all three ILs by chronoamperometry and found to be at least one order of magnitude less than the calculated value of TBPA. This effect, in conjunction with the deviation of the Ia/Ic ratio from unity could be ascribed to ion-pairing interaction between the TBPA+ cation and the anion of the RTILs.  相似文献   

20.
Electrochemical disinfection in chloride-free electrolyte has attracted more and more attention due to advantages of no production of disinfection byproducts (DBPs), and boron-doped diamond (BDD) anode with several unique properties has shown great potential in this field. In this study, inactivation of Escherichia coli (E. coli) was investigated in Na2SO4 electrolyte using BDD anode. Firstly, disinfection tests were carried on at different current density. The inactivation rate of E. coli and also the concentration of hydroxyl radical (OH) increased with the current density, which indicated the major role of OH in the disinfection process. At 20 mA cm−2 the energy consumption was the lowest to reach an equal inactivation. Moreover, it was found that inactivation rate of E. coli rose with the increasing Na2SO4 concentration and they were inactivated more faster in Na2SO4 than in NaH2PO4 or NaNO3 electrolyte even in the presence of OH scavenger, which could be attributed to the oxidants produced in the electrolysis of SO42−, such as peroxodisulfate (S2O82−). And the role of S2O82− was proved in the disinfection experiments. These results demonstrated that, besides hydroxyl radical and its consecutive products, oxidants produced in SO42− electrolysis at BDD anode played a role in electrochemical disinfection in Na2SO4 electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号