首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
低压下新疆黑山煤直接液化工艺性能研究   总被引:1,自引:0,他引:1  
以新疆黑山煤样为对象,采用正交实验设计法,在低压下考察了初压、反应时间、反应气氛和溶煤比四个因素及它们之间的交互作用对其液化性能影响,结果表明:在给定的其他条件下,黑山煤在初压6 MPa,反应60 min,纯氢和溶煤比2:1时,油产率达到52.06%,转化率为76.51%,就油产率而言,溶煤比和反应气氛高度显著影响,反应初压一般影响,反应时间无影响,四个因素间的三种交互作用可忽略,降低初压到6 MPa,黑山煤仍具有理想的直接液化工艺性能.  相似文献   

2.
采用微型高压反应釜,在不同温度和氢初压条件下,考察了白洞煤的液化性能,并采用模拟蒸馏对液化产物油进行了分析.结果表明,随着温度和氢初压的增加,白洞煤液化总转化率和油产率均有所提高,其中,温度对反应性影响更为显著,在7MPa的氢初压下,温度由420℃升高到450℃时,总转化率和油产率分别提高20.98%和18.78%.同时,随温度和氢初压增加,产物呈规律性的变化,沥青烯和前沥青烯的产率下降,水产率基本不发生变化,CO+CO2,C1~C4产率及氢耗率增加.液化产物油中,中油含量最高,占产物油的57.5%,轻油和重油分别占9.5%和33.0%.产物油的烷碳含量高于芳碳含量.  相似文献   

3.
中国直接液化油煤浆及液化残渣流变特性研究进展   总被引:1,自引:0,他引:1  
在煤直接液化工艺中,油煤浆和液化残渣的流变特性参数是工艺设计的重要基础数据之一。本文总结了我国液化油煤浆在常压常温、常压升温和加压升温条件下流变特性的研究进展和相应的流变模型,介绍了溶剂的性质、煤在溶剂中的溶胀、煤的热溶产物或初始液化反应产物等对煤浆体系黏度变化的影响,对开展我国液化油煤浆和液化残渣的流变特性研究,具有一定的指导意义。  相似文献   

4.
利用高压反应釜,采取程序控制升温的方法,以义马煤为原料,循环油为溶剂,Fe2O3为催化剂和S为助催化剂,在不同反应时间、温度和初始氢压下,测定了义马煤直接液化效果的影响因素.结果表明,随着温度升高,转化率呈减小趋势,而油产率随着反应温度的增加呈现出先增加后减小的趋势,在380℃时油产率达到最大值;随着初始压力的增加,转化率和油产率都有所增加,但增加幅度很小,在9 MPa时油产率达到最大值;随着反应时间的增加,转化率和油产率都有所增加,在120 min时油产率和转化率均达到最大值.  相似文献   

5.
神华煤直接液化油煤浆常温流变特性研究   总被引:1,自引:0,他引:1  
研究了常温放置不同时间神华煤直接液化油煤浆随存放时间、测定温度、剪切速率的不同流变特性的变化规律,并分析了可能的原因.结果表明,常温放置不同时间,在相同温度和相同剪切速率下,油煤浆的黏度与油煤浆常温放置时间关系不大;相同的存放时间和相同的剪切速率,油煤浆黏度随着温度的升高而下降;在相同的存放时间、相同的温度和不同剪切速率下,油煤浆黏度随着剪切速率的增加而升高.  相似文献   

6.
煤直接液化中煤浆黏度变化研究进展   总被引:20,自引:5,他引:15  
在煤直接液化中,煤浆黏度变化是一个十分重要的工艺性问题,至今尚未得到充分研究.在升温过程中,由于煤与循环油之间的相互作用,煤浆黏度会发生明显变化,甚至出现一至两次突变.对煤浆在高温高压下黏度变化研究方法,各种因素如温度、煤阶、催化剂、剪切速率和油煤比等的影响及有关机理以及预测黏度变化的模型等作了概述和讨论,对进一步开展这一方面的研究和煤直接液化技术的工业开发有一定参考价值.  相似文献   

7.
本文针对目前煤直接液化项目煤转化油品收率偏低、煤直接液化项目经济性相对较差的问题,提出从煤粉原料、催化剂活性组分、溶剂油供氢性、反应条件、减底油品拔出等方面研究,调整操作,摸索最佳工艺条件。通过摸索研究,固化最佳工艺条件,煤转化油品收率显著提高,提高煤直接液化项目经济性。  相似文献   

8.
煤直接液化条件下神华煤煤浆粘度的测定   总被引:1,自引:0,他引:1  
为研究煤直接液化条件下煤浆的粘度变化,利用剪应力分解法测量了神华煤煤浆在250~450℃的温度范围内的粘度,发现在340℃以前粘度总体呈下降趋势,340℃以后粘度开始上升,并在380℃出现峰值,而后粘度又逐渐下降。对升温速率的影响做了简单分析,发现升温速率变大,出现粘度峰的温度增高。  相似文献   

9.
在0.5L搅拌式高压釜上开展了中温煤焦油与新疆黑山煤共处理的实验研究,考察了中温煤焦油添加量对新疆黑山煤制浆性能和液化结果的影响,探索中温煤焦油加工利用新途径.结果表明,添加中温煤焦油增加了油煤浆输送时的黏度,在油煤浆浓度为42%时,中温煤焦油添加量不高于18%.与新疆黑山煤单独液化相比,中温煤焦油与新疆黑山煤共处理具有氢耗、气产率、转化率和油产率高的特点;添加适量的中温煤焦油对新疆黑山煤液化具有正协同效应,添加量大于20%时反而对煤转化不利;最佳添加量为5%,与煤单独处理的结果相比,转化率高1.6%,油产率高1.1%;添加量大于20%时,油收率下降.因此,添加适量的中温煤焦油与新疆黑山煤共处理,既可提高煤的转化率和油收率,又可加工利用中温煤焦油,提高煤直接液化的经济效益.  相似文献   

10.
以内蒙古吉林郭勒地区的褐煤为试验原料,分别采用直接液化常规的油煤浆制备工艺和分级研磨制浆工艺进行成浆性试验,并对试验得到的油煤浆的粘温特性进行对比研究。结果表明:与常规制浆工艺相比,分级研磨制浆工艺可使油煤浆浓度提高4%,且煤浆的流变性和稳定性均有明显改善;油煤浆的粘度随温度的升高呈现出先降低后升高的趋势,分级研磨工艺制得的油煤浆发生明显溶胀作用的温度较常规工艺高20℃。  相似文献   

11.
以新疆阜康西沟原煤(200目)为研究对象,四氢萘为制浆和供氢溶剂,利用正交及单因素实验确定西沟煤适宜的液化条件.结果表明,T=435℃,p=7 MPa,m(solvent)∶m(coal)=1.75∶1和t=60 min为适宜的液化条件.此条件下,rη(oil)=75.33%.进一步探讨了煤粒径及超声处理对液化效果的影响.西沟原煤经胶体磨研磨后直接液化:研磨1h,粒径9.98 μm,η(oil)=59.96%;研磨2h,粒径2.60 μm,η(oil) =60.03%;研磨3h,粒径1.10 μm,r(oil) =60.02%;研磨4h,粒径0.76 μm,η(oil) =60.06%.若研磨后先超声处理再液化,研磨1h,2h,3h和4h后油产率为80.73%,81.25%,84.27和82.63%,比不超声分别提高了20.77%,21.22%,24.25%和22.57%.  相似文献   

12.
研制了一种复合催化剂,考察了催化剂对神东煤直接液化的催化活性,主要考察了催化剂粒度等因素对直接液化反应的影响,并与煤炭科学研究总院自主研发的863催化剂进行对比.研究结果表明,随着复合催化剂粒径变小,煤液化的转化率和油产率增加;中间产物沥青烯和前沥青烯组分产率基本不变,气产率和氢耗率降低.与863铁基催化剂相比,小于74μm的复合催化剂的催化效果要优于后者.该催化剂中含有一定的镍,镍的强加氢作用使得煤液化反应转化率增加,油产率增加.  相似文献   

13.
研制了一种复合催化剂,考察了催化剂对神东煤直接液化的催化活性.主要研究了催化剂粒度等因素对直接液化反应的影响,并与煤炭科学研究总院自主研发的863催化剂进行对比.结果表明,随着复合催化剂粒径变小,煤液化的转化率和油产率增加;中间产物沥青烯和前沥青烯组分产率基本不变,气产率和氢耗率降低.与863铁基催化剂相比,小于74μm的复合催化剂催化效果要优于后者.该催化剂中含有一定镍,镍的强加氢作用使得煤液化反应转化率和油产率增加.  相似文献   

14.
在溶煤比为2.75∶1,氢初压为6.0MPa和反应时间为60min条件下,考察了温度、飞灰加入量、CoSO4和NiSO4用量及其加入方式等因素对五彩湾煤直接液化性能的影响.结果表明,在给定的条件下,在飞灰加入量为3%(daf,质量分数)和温度为415℃时,可获得最大油产率为64.59%;当CoSO4和NiSO4与飞灰和煤样机械混合加入时,对液化油产率和转化率产生负效应;当NiSO4和CoSO4浸渍担载加入时,油产率分别达到68.01%和66.58%.尽管煤质分析结果表明该煤样加氢液化性能较差,但以飞灰、CoSO4和NiSO4为催化剂时,还是获得了良好的液化效果.  相似文献   

15.
德国IGOR煤液化工艺及云南先锋褐煤液化   总被引:11,自引:1,他引:11  
介绍了德国IGOR煤直接液化工艺和云南先锋褐煤在IGOR工艺200kg/d的PDU装置的试验结果.与其它煤直接液化工艺相比,IGOR工艺具有煤直接液化反应器的空速高、系统集成度高和油品质量好的特点.云南先锋褐煤在IGOR工艺200kg/d的PDU装置上的试验结果表明.先锋褐煤是适宜IGOR煤液化的煤种.得到的油收率为53%,油品中氮和硫的含量分别为2mg/kg和17mg/kg.煤液化油经过简单蒸馏可得到合格的0^#柴油,经过重整可得到合格的90^#无铅汽油.  相似文献   

16.
煤炭直接液化油中含有种类丰富且数量可观的酚类化合物,研究影响酚类含量和组成的因素,对于深入研究煤液化产物中酚类化合物的生成机理具有重要的理论意义和实践意义.考察了煤液化过程中反应温度、催化剂及添加高分油三种工艺条件对煤液化油(41℃~220℃)中酚类含量分布的影响.结果表明:随着反应温度升高和催化剂加入都能增加煤液化油中总粗酚产率,而添加高分油方式则不太明显;另外,升高反应温度和添加高分油两种方式可以促进高级酚类中间体发生裂解、脱烷基及脱羟基等二次反应向生成分子量更小、结构更简单的低级酚类进行转化,而通过催化剂的加入可以抑制部分高级酚类向低级酚类的转化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号