首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R.G. Wellman  J.R. Nicholls  K. Murphy 《Wear》2009,267(11):1927-5378
Thermal barrier coatings (TBCs) have now been used in gas turbine engines for a number of decades and are now considered to be an accepted technology. As there is a constant drive to increase the turbine entry temperature, in order to increase engine efficiency, the coatings operate in increasingly hostile environments. Thus there is a constant drive to both increase the temperature capabilities of TBCs while at the same time reducing their thermal conductivities. The thermal conductivity of standard 7 wt% yttria stabilized zirconia (7YSZ) electron beam (EB) physical vapour deposited (PVD) TBCs can be reduced in two ways: the first by modification of the microstructure of the TBC and the second by addition of ternary oxides. By modifying the microstructure of the TBC such that there are more fine pores, more photon scattering centres are introduced into the coatings, which reduce the heat transfer by radiation. While ternary oxides will introduce lattice defects into the coating, which increases the phonon scattering, thus reducing the thermal conductivity via lattice vibrations. Unfortunately, both of these methods can have a negative effect on the erosion resistance of EB PVD TBCs.This paper compares the relative erosion rates of ten different EB PVD TBCs tested at 90° impact at room temperature and at high temperature and discusses the results in term of microstructural and temperature effects. It was found that by modifying the coating deposition, such that a low density coating with a highly ‘feathered’ microstructure formed, generally resulted in an increase in the erosion rate at room temperature. When there was a significant change between the room temperature and the high temperature erosion mechanism it was accompanied by a significant decrease in the erosion rate, while additions of dopents was found to significantly increase the erosion rate at room and high temperature. However, all the modified coatings still had a lower erosion rate than a plasma sprayed coatings. So, although, relative to a standard 7YSZ coating, the modified coatings have a lower erosion resistance, they still perform better than PS TBCs and their lower thermal conductivities could make them viable alternatives to 7YSZ for use in gas turbine engines.  相似文献   

2.
Since thermal barrier coatings (TBCs) have been used in gas turbines most of the research conducted on them has involved the bond coat and the growth of the thermally grown oxide (TGO) as failure of the bond coat and the TGO were considered to be the primary causes of failure. Erosion of TBCs has been considered as a secondary problem and as such received less attention. Most of the initial work on the erosion of TBCs covered the effects of velocity and impact angle on the erosion rates of both plasma sprayed (PS) and electron beam physical vapour deposited (EB-PVD) TBCs and compared the differences between the two deposition systems. It must be noted that most of the tests were conducted on coatings in the as received condition. This paper aims at expanding the understanding of the erosion of EB-PVD TBCs by examining the effects of TBC morphology, column diameter, column inclination angle and the effects of aging and sintering on the erosion rates of EB-PVD TBCs. The paper also looks at how erosion rate changes as the coating is eroded through to the bond coat.The paper also looks at the mechanisms of foreign object damage of EB-PVD TBCs under a range of different impact conditions. The different damage mechanisms have been identified and related to the size and impact velocity of the impacting particles. The effect of temperature on the plasticity and hence the mechanisms are also discussed, while mapping is used to set the boundary limits for the different types of damage mechanisms that have been identified. It was found that at temperatures above 800 °C the coatings can accommodate a large degree of plastic deformation, while at room temperature there is a greater degree of cracking, for similar types of FOD impact. The 800 °C is not necessarily a limit, but the temperature at which the coatings were tested, and the limiting temperature could in fact be significantly lower. It was found that, all else being equal, erosion rate decreases with a decrease in the column diameter, while aging results in an increase in the erosion rate, dependent on the aging temperature and time. A decrease in the inclination angle of the columns with respect to the substrate increases the erosion rate, when the inclination angle is less than 60° the erosion rate increases catastrophically. These effects are all discussed and explained in terms of erosion mechanisms and mechanical properties in the paper.  相似文献   

3.
As a nondestructive testing technique, terahertz time-domain spectroscopy technology is commonly used to measure the thickness of ceramic coat in thermal barrier coatings (TBCs). However, the invisibility of ceramic/thermally grown oxide (TGO) reflective wave leads to the measurement failure of natural growth TGO whose thickness is below 10 μm in TBCs. To detect and monitor TGO in the emergence stage, a time of flight (TOF) improved TGO thickness measurement method is proposed. A simulative investigation on propagation characteristics of terahertz shows the linear relationship between TGO thickness and phase shift of feature wave. The accurate TOF increment could be acquired from wavelet soft threshold and cross-correlation function with negative effect reduction of environmental noise and system oscillation. Thus, the TGO thickness could be obtained efficiently from the TOF increment of the monitor area with different heating times. The averaged error of 1.61 μm in experimental results demonstrates the highly accurate and robust measurement of the proposed method, making it attractive for condition monitoring and life prediction of TBCs.  相似文献   

4.
精确提取陶瓷层(Top coat,TC)与热生长氧化层(Thermally grown oxide,TGO)层在太赫兹频段的折射率是进行热障涂层(Thermal barrier coatings,TBCs)太赫兹无损检测研究的重要条件。由于对涂层样品只能采取反射式测量,所以首先比较了反射式与传统透射式测量条件下提取样品太赫兹光学参数及厚度的结果,随后利用反射式太赫兹时域脉冲成像系统提取等离子体喷涂的8YSZ热障涂层(TBCs)中TC层与TGO层的折射率,并依据所提取折射率进一步对TC层的厚度分布进行测量及成像。试验结果表明在材料中衰减较小的有效频段下反射式测量同样可以精确提取样品的折射率以及厚度,反射式测量TC层的平均折射率为5.23,TGO层的折射率为2.91,TGO的主要成分α-Al2O3的折射率为2.85。TBCs样品中TC层的平均厚度为257 μm,从TC层厚度的太赫兹图像中可观察到TC与粘结层(Bond coat,BC)界面的不均匀程度。反射式太赫兹无损检测可精确提取TBCs中TC与TGO的折射率和厚度,这对于TBCs中裂纹和气泡等缺陷的识别以及TGO生长太赫兹检测具有重要意义。  相似文献   

5.
广泛应用于热能动力的热障涂层在高温工作环境下,由于温度梯度产生的热应力不匹配会导致热障涂层层裂或剥落失效。本文针对热障涂层层裂问题,考虑热应力不匹配因素,建立热障涂层层裂I/II复合型断裂准则,并针对分层裂纹在陶瓷层与粘结层界面上和附近的3种位置存在形式,进行了热障涂层结构单裂纹层裂的算例分析。结果表明界面处层裂纹对应变能释放率影响最大。  相似文献   

6.
采用热弹塑性有限元法,对热障涂层在不同温度梯度作用的过程中,由于材料系数不匹配而引起的应力和位移进行了模拟分析.结果表明,等效应力的大小随温度梯度的大小单调递减;界面最大位移随温度梯度单调递增.同时也发现,模型在不同温度梯度下存在一个最小位移;当材料属性和载荷一定时,将存在一个最佳涂层厚度,使得涂层总的位移最小.该结果对分析涂层寿命及失效机制有指导意义.  相似文献   

7.
For the combinations of an Si3N4 pin and five kinds of ceramic disk (SiC, Si3N4, Al2O3, ZrO2, TiC), a friction and wear test was carried out in ethanol and in ethanol containing iron particles (1 wt.%, average diameter d = 200 nm, D = 12 μm under cohered condition) under a load in the range 5.88–11.50 N, at a sliding velocity of 0.138–0.196 m s−1. A topographical analysis was also performed on the microasperities of the wear surfaces to estimate the behavior of the iron particles, and the degree of surface damage. As a result, the following facts were found. (1) The addition of iron particles in ethanol decreased both the wear rates of SiC and TiC disks and the mating pins, and also decreased the wear rate of the Al2O3 disk but increased that of the mating pin. The addition increased the wear rates of both ZrO2 and Si3N4 disks and the mating pins. (2) The average coefficients of friction with the addition of iron particles were greater than those without iron particles. (3) The wear rates of pin and disk depended on the topographies of wear surfaces and the wear index Γ.  相似文献   

8.
S.S. Rajahram  T.J. Harvey  R.J.K. Wood 《Wear》2009,267(11):1883-1893
The phenomenon of erosion–corrosion has been studied extensively by various investigators but no accurate model has been developed to predict the interactions between erosion and corrosion. This is mainly attributed to the complexity of the interactions that generate either a synergistic or antagonistic wear effect for a particular material in a certain environment. A semi-empirical model has recently been developed at the University of Southampton which incorporates dynamic Hertzian contact mechanics to model the damage during particle impact and accommodates the effect of erodent deforming the surface leading to an increased corrosion activity. The model was found to have good agreement with erosion–corrosion rates of carbon steel. The aim of this paper is to evaluate the robustness of this semi-empirical model by testing it on a passive metal. UNS S31603 was chosen due to its inherent passivity to corrosion. A slurry pot erosion tester was used as the test rig to perform the experiments. It was found that this passive metal produces high synergistic levels when exposed to erosion–corrosion in 0.3 M HCl with variation in erodent concentrations and flow velocities. SEM and surface profilometry show typical ductile material behaviour with cutting mechanism and deformation mechanism occurring simultaneously. A wear map is presented and it is observed that the increase in velocity and sand concentration causes the material to shift from a corrosion–erosion dominated region to an erosion–corrosion dominated region. This paper will also evaluate the semi-empirical model and discuss its applicability in predicting erosion–corrosion.  相似文献   

9.
10.
Wang  H.W.  Stack  M.M. 《Tribology Letters》1999,6(1):23-36
The erosion-corrosion of mild steel (BS6323), in the presence and absence of physically vapour deposited (PVD) TiN and CrN coatings, was studied, in comparison with that of AISI 304 stainless steel, in an aqueous alkaline slurry solution containing alumina particles. The influence of applied potential and particle velocity on the total erosion-corrosion loss was examined, and the respective corrosion and erosion damage (both contributing to the overall weight loss) then assessed by means of microscopical investigation of the morphology of the damaged surface, and subsequently evaluated quantitatively. The superior erosion-corrosion resistance of both the coatings compared to that of the uncoated mild and stainless steels was shown to be due to their resistance to both wear and corrosion. According to the detailed corrosion mechanisms revealed and different responses to wear, schematic diagrams were proposed to outline the main features of the corrosion-erosion process and the individual roles of erosion and corrosion. Discrete differences, in terms of the respective erosion and corrosion processes, between the TiN and CrN coatings, and between the mild and stainless steels, were also investigated and discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
H.H. Tian  G.R. Addie  R.J. Visintainer 《Wear》2009,267(11):2039-1431
In many slurry transportation systems, such as in FGD (Flue Gas Desulphurization) and chemical processing applications, corrosion and erosion are the two main mechanisms of material degradation of the pump wet-end components including pump casing, impeller and liners. The performance of a selected material is mostly dependent upon its relative corrosion and erosion resistance to the service environment. In these cases erosion, corrosion and the related synergistic effects can be very complicated since they are affected by numerous factors including solid and slurry properties, chemical contents, hydraulic conditions and temperatures. In this experimental study, sliding Coriolis erosion testing has been performed with various corrosion factors such as pH value, chlorides content and temperature to evaluate the erosion–corrosion resistance of some high-alloyed white cast irons containing different levels of chromium and other elements. Optical microscope and SEM-EDS have also been used to examine microstructure and surface conditions of tested materials. Results indicated that material loss due to corrosion factors increased as acidity-chlorides and temperature increased. At relatively high corrosion intensity, the white cast irons with higher alloy content (especially chromium) clearly showed improved corrosion resistance and combined erosion–corrosion resistance over those with lower alloy content. Under certain corrosion and hydraulic conditions, particle size is perhaps the single most influential factor on erosion–corrosion rate of the high-Cr cast iron alloys. Relatively large particles are much more effective than small ones at removing both the corroded surface layer and the fresh material, causing substantially higher rate of material loss. Some other related factors have also been addressed.  相似文献   

12.
通过对水电站典型应用材料(55钢、1Cr18Ni9Ti、0Cr13Ni5Mo)在冲蚀磨损过程中电化学腐蚀及抗冲蚀磨损性能研究,区分出纯磨损、纯腐蚀、磨损对腐蚀的促进分量及腐蚀对磨损的促进分量等在材料失效过程中各占的比例,考察了试验材料的抗冲蚀磨损特性及其磨损与腐蚀间的交互作用,分析了其失效机制。结果表明:不同的冲蚀速度下,0Cr13Ni5Mo不锈钢的冲蚀磨损失重率最小,55钢最大;纯磨损是材料失去的主要方式:55钢虽然纯磨损量较小,但腐蚀及其磨损与腐蚀的交互作用失去量大,1Cr18Ni9Ti不锈钢虽然纯腐蚀量小,但纯磨损量大,因而都有应用的局限性。  相似文献   

13.
A. Neville  B. A. B. McDougall 《Wear》2001,250(1-12):726-735
The economic and effective operation of machinery and plant involved in fluids handling is increasingly dependent on the utilisation of materials that combine high corrosion resistance and good wear resistance. This paper studies two wear–corrosion situations: (1) erosion–corrosion, where the wear is due to impacting solids in a liquid medium and (2) cavitation–corrosion, where the wear is due to impacting liquid micro-jets formed by imploding air bubbles. The characteristics of a commercially pure titanium (CP-Ti) and three alloys in erosion–corrosion and cavitation–corrosion conditions have been studied. The erosion–corrosion characteristics of each material was assessed using an impinging-jet apparatus. The tests were performed at an angle of impingement of 90°C at a particle velocity of 17 m/s and in a saline solution of 3.5% NaCl at 18°C. A series of experiments was conducted to determine the mass loss by combined erosion–corrosion before independently determining the electrochemical corrosion contribution to mass loss. It has been shown that exposure to liquid–solid erosion causes disruption of the passive film on Ti and active corrosion occurs. In contrast, the materials exhibited passive behaviour in static conditions and when exposed to a cavitating liquid only CP-Ti became active. The role of corrosion in these wear–corrosion environments on CP-Ti and Ti-alloys is discussed in this paper.  相似文献   

14.
This paper presents an example-based discussion of erosion–corrosion and flow corrosion processes that have been identified using electrochemical noise measurements. Various single and dual phase corrosion and erosion–corrosion experiments on austenitic stainless steels and various thermally sprayed coatings using jet impingement and pipe flow rigs are discussed. Localised corrosion events, metastable and propagating pitting, passive and general corrosion processes have been identified under various flow conditions of NaCl solutions. Oscillations in the electrochemical potential noise signals have been related to an erosion-enhanced corrosion synergistic effect. Electrochemical noise measurements show responses to electrolyte permeation of the coating, coating erosion penetration and substrate activity under erosion–corrosion conditions.  相似文献   

15.
Xinming Hu  Anne Neville 《Wear》2009,267(11):331-1301
A systematic study of pipeline steel (API X65) degradation due to erosion–corrosion containing sand in a CO2 saturated environment has been carried out. This work focuses on the total material loss, corrosion, erosion and their interactions (synergy) as a function of environmental parameters (temperature, flow velocity and sand content) to enable the critical conditions, which move the damage mechanism from a flow-induced corrosion regime to erosion–corrosion regime, to be determined.The experimental results show that the effect of corrosion in enhancing erosion, often referred to as the synergy, is significant and accounts for a high proportion of the deviation of measured material loss from the prediction derived from established CO2 corrosion models. Ways forward to improve erosion–corrosion prediction are discussed.  相似文献   

16.
Very little research effort has been directed at development of models of erosion–corrosion of composite materials. This is because, in part, the understanding of the erosion–corrosion mechanisms of such materials is poor. In addition, although there has been a significant degree of effort in the development of models for erosion of MMCs, there are still difficulties in applying such models to the laboratory trends on erosion rate.In this paper, the methodology for mapping erosion–corrosion processes in aqueous slurries was extended to particulate composites. An inverse rule of mixtures was used for the construction of the erosion model for the particulate MMCs. The corrosion rate calculation was evaluated with reference to the matrix material.The erosion–corrosion maps for composites showed significant dependency on pH and applied potential. In addition, the corrosion resistance of the matrix material was observed to affect the regime boundaries. Materials maps were generated based on the results to show the optimum composite composition for exposure to the environment.  相似文献   

17.
R.C. Barik  J.A. Wharton  R.J.K. Wood  K.R. Stokes   《Wear》2009,267(11):1900-1908
This study aims to understand the physical processes invoked when solid particle erosion occurs in a corrosive media. The literature on wear-corrosion shows some effort has been placed in qualifying the interactions between erosion and corrosion leading to ‘synergistic’, ‘additive’ and ‘antagonistic’ terms. These terms are difficult to quantify experimentally with multiple experiments being required and generate considerable errors often suggesting these interactive terms are negligible. Hence the current work seeks to investigate these interactions, the errors associated with their measurement and gain understanding of the processes involved by careful examination of microstructural and mechanical property changes of surfaces subjected to erosion–corrosion. Cast nickel–aluminium bronze/NaCl solution has been chosen to study as this system has been studied at Southampton for several years. In situ electrochemical, gravimetric and topographical analyses have been evaluated and discussed using microstructural and hardness measurements.  相似文献   

18.
In this paper aspects of the corrosion behaviour of two materials (Co-base Stellite X-40 and austenitic cast iron BS 3468 S2W) under aggressive slurry erosion conditions are considered. Electrochemical techniques are used to assess the rate of corrosion in impingement conditions. The material degradation has been separated into components of mechanical erosion, electrochemical corrosion and interactive effects. It has been shown that the erosion significantly enhances the corrosion rate of both materials and has the effect of moving Stellite X-40 from a passive to an active corrosion regime. However, in terms of the magnitude of the material loss component the effect of corrosion on erosion (often referred to as synergy) is a much more prominent feature for both materials.  相似文献   

19.
《Wear》2006,260(1-2):75-82
The main objective of this paper is to study the slurry erosion and corrosion behavior of WC10Co4Cr, Armcore ‘M’ Stellite 6 and 12 HVOF coatings, TiAlN PVD coating, selected steels, such as X20Cr13, 17Cr–4Ni pH steel and Ti6Al4V titanium alloy alongwith conventional hard weld deposits of Stellite 6 and 21. The slurry erosion studies were carried out at 60° angle of impingement for the velocities in the range of 15–20 m/s using mineral sand of −40 to +80 mesh. The corrosion studies were carried out as per ASTM B 117-73 for 100 h. During slurry erosion testing, WC10Co4Cr HVOF along with TiAlN PVD coating are found out, to be the best coating materials followed by HVOF coating of Armcore ‘M’ material. However, for corrosion, Ti6Al4V, Stellite 6 and 21 hard weld deposits and 17Cr–4Ni pH steel turned out to be the best materials followed by HVOF coating of Stellite 6 and 12. HVOF coatings of WC10Co4Cr and Armcore ‘M’ materials corroded significantly, however, TiAlN PVD coating corroded very badly even after 24 h of testing.  相似文献   

20.
《Wear》2007,262(7-8):791-799
The present study has been conducted to investigate the interaction between corrosion and erosion processes and to quantify the synergism in realistic flow environments, including sudden pipe constrictions, sudden pipe expansions, and protrusions. Tests were conducted on AISI 1018 carbon steel using 1 wt% sodium chloride (NaCl) solution purged with CO2 as the corrosive media and silica sand as the erodent.The experiments were designed to understand whether erosion enhances corrosion or corrosion enhances erosion and to evaluate the contribution of the individual processes to the net synergism. It was observed that erosion enhances corrosion and corrosion enhances erosion, with each contributing to significant synergism; however, the dominant process was the effect of corrosion on erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号