首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
某200m级的碾压混凝土重力坝坝基地质条件复杂,两条断层分别位于坝踵、坝趾附近岩体的关键部位,对坝基、坝体的变形、应力、抗滑稳定性等有较大的影响,因此有必要采用有限元法复核该坝在静动力作用下的应力变形。建立了该坝底孔坝段的三维有限元模型,分别以规范反应谱、场地反应谱为目标谱合成了设计地震、校核地震下共四条人工地震波,然后对该底孔坝段模型在九种工况下进行了静、动力分析,并对坝体关键部位的主应力按极限状态公式进行了强度验算。结果表明:在静力、设计地震、校核地震作用下,底孔坝段坝踵垫层混凝土和上、下游折坡处材料抗拉强度均满足要求;坝趾的抗压强度也满足要求,并且具有较大的安全裕度;场地谱人工波的计算结果与规范谱人工波的结果很接近。  相似文献   

2.
拉哇面板堆石坝位于金沙江上游基本烈度达Ⅷ度的强震区,为评价其极限抗震能力,采用堆石体地震残余变形、坝坡动力稳定、面板应力以及面板脱空等指标,研究了规范反应谱、坝址一致概率反应谱以及设定地震反应谱等不同反应谱在不同峰值加速度下大坝的地震动反应。结果表明:在同一反应谱下随着峰值加速度的提高,大坝的动力反应逐渐增大;不同反应谱在相同峰值加速度下大坝的动力反应呈现较大差异。一致概率反应谱条件下大坝的加速度反应、面板脱空量、堆石体残余变形和下游坝坡的滑动都明显大于规范谱和设定地震谱;设定地震谱下的大坝动力反应则略高于规范反应谱。结合反应谱的生成方式,宜选取设定地震反应谱对拉哇面板堆石坝的极限抗震能力进行评价。计算得到拉哇面板坝的极限抗震能力在0.55g~0.6g。  相似文献   

3.
埃塞俄比亚KESEM土石坝动力分析   总被引:1,自引:0,他引:1  
采用有效应力非线性有限元法对埃塞俄比亚Kesem粘土心墙土石坝进行了地震反应分析。得到该坝在地震作用下坝体的加速度反应和应力反应,根据坝坡残余变形及坝坡的动力稳定性等进行了抗震评价。  相似文献   

4.
密松水电站面板堆石坝属于超宽河谷的面板堆石坝,其抗震分析还缺少相应的工程经验。针对面板堆石坝在强震中易产生坝体永久变形过大及面板易破损等问题,采用拟静力法和有限元时程动力法,分析了堆石坝的加速度和应力反应、面板应力、接缝变形、坝体地震残余变形以及坝坡的动力稳定性,对大坝的抗震安全性进行了综合评价。结果表明,在设计与校核地震作用下,坝坡稳定性满足规范要求,坝体永久变形与同类工程相当,面板应力状态满足抗震安全要求,面板接缝变形在止水结构允许范围之内。  相似文献   

5.
下坂地水库地处高地震区,大坝基础覆盖层厚度达150 m,且存在粉细砂层,针对下坂地大坝工程的特点,在坝料静、动力特性试验和三维静力分析的基础上,采用考虑坝体—覆盖层—防渗体等动力相互作用的非线性有效应力地震反应分析方法,对下坂地沥青混凝土心墙坝坝体和覆盖层进行了地震情况下安全评价。  相似文献   

6.
阿尔塔什面板坝最大坝高164.8 m,覆盖层深度94 m,大坝抗震按9度设防。坝基覆盖层与坝体总高度达258 m,按变形控制而言,为强震区300 m级超高面板堆石坝。根据坝料室内试验资料,考虑坝料振动过程中的硬化特性,对大坝和坝基组成的系统进行了整体三维有限元计算,通过分析坝体以及坝基防渗墙的地震加速度反应、动应力反应,分析了大坝震后永久变形以及面板与防渗墙连接部位的变形。结果表明:堆石体、面板及防渗墙最大加速度反应为9.8 m/s2,放大倍数在2.7~3.6倍之间,堆石体动剪应力不大于400 kPa,地震反应在容许范围内;大坝震后表现为体积震缩特性,最大震陷110 cm,占坝体与坝基可压缩层总高度的0.4%;大坝地震反应分布规律合理,坝体抗震安全性满足规范要求。研究成果可作为大坝抗震设计优化的依据。  相似文献   

7.
水库诱发地震对混凝土坝的影响及抗震设防   总被引:2,自引:0,他引:2  
 水库诱发地震已成为影响大坝安全的重大环境问题,会给大坝造成不同程度的危害。以新丰江水库地震和柯依纳水库地震对大坝的破坏为例,探讨水库地震对混凝土大坝的影响。对于混凝土坝通常坝顶最易遭到破坏,坝顶的过坝公路及非结构建筑,增加了破坏的可能性,因此在抗震设计时需要考虑坝顶动力放大效应和坝体高阶振型对坝头应力的影响。利用实测的地震加速度记录,对大坝进行抗震反应分析, 综合大坝地震应力分析来看,地震作用在坝踵处产生较大的拉应力,而坝趾附近的剪应力也较大。在刚度发生突变的位置及上下游坝面坡折部等易发生较大拉应力处,均为坝体的抗震薄弱部位。基于水库地震对大坝的影响,做好抗震设防是保障大坝安全的一个重要因素。  相似文献   

8.
为研究碾压式沥青混凝土心墙坝施工及运行期的受力特性,以新疆某水利枢纽工程为例,采用非线性邓肯-张E-B模型进行大坝三维有限元静力计算,采用等效线性粘弹性模型进行大坝三维有限元动力计算,采用三维等价结点力法研究坝体地震永久变形,主要研究坝体在静动力条件下坝体和防渗体的应力、变形以及基座与心墙的相对位移。结果表明,静力条件下,坝体最大沉降约占坝高的0. 27%,蓄水后心墙最大压应力较竣工期减少约14. 2%,蓄水后心墙顺河向最大位移较竣工期增大约2. 6倍、沿坝轴线方向减小约13. 3%;动力条件下,坝体地震沉降约占坝高的0. 09%,地震发生时坝体最大横断面心墙出现拉应力,其值约为最大压应力的9. 5%,地震结束后心墙最大压应力减小约16. 7%,未出现拉应力,地震后坝体顺河向发生永久位移,心墙最大压应力较地震前增大1. 9%,心墙顺河向最大位移较地震前增大约15. 4%、沿坝轴线方向减小约11. 5%。  相似文献   

9.
塔城砾石土心墙堆石坝最大坝高 315 m ,地震动作用下,坝身特别是坝体上部容易出现严重裂缝或者坝坡失稳等问题。为了考察高土石坝经历高震级地震时的抗震性能,坝体及覆盖层材料采用 Hardin 非线性动力模型,在三维非线性静力分析基础上,用时程法对大坝进行地震动力分析,以揭示在 Taft 三向地震波的作用过程中坝体中加速度、动位移、动应力的分布及其地震永久变形和液化情况。坝体非线性仿真结果表明,在设防烈度地震作用下,在坝体最大断面上,坝顶动力放大系数为 2.5 左右, 1/2 坝高小范围内有拉应力出现,坝体沉陷及向下游水平位移较大,坝踵坝趾局部有一定的液化可能。  相似文献   

10.
根据某水利枢纽大坝工程,对地震荷载下坝体响应机理进行分析。从坝体地震加速响应、动位移响应以及混凝土心墙坝应力响应3个方面进行分析。结果表明:大坝地震响应具有显著的辫梢效应,动位移与坝体高程呈正相关关系,地震影响下,混凝土心墙出现短暂的拉应力。在设计过程中,应当重视坝体结构对地震影响的放大作用,预留足够的安全度。  相似文献   

11.
为了全面掌握龙滩碾压混凝土重力坝在各种荷载组合下,大坝、特别是坝内孔口周边的应力状况,坝趾、坝踵及层面上、下游的应力、应变状况,采用有限元[1,2]对龙滩碾压混凝土重力坝两种设计坝型在各种静、动荷载作用下的应力和变形进行了计算分析,得出了坝体的位移场和应力场;采用传统的材料力学法对静荷载工况和反映谱法、时程动力法对动载工况的计算成果分别进行了验证,说明有限元分析成果的正确性和合理性.  相似文献   

12.
采用基于有限单元法的振型分解反应谱法,研究横观各向同性的层状岩基对重力坝地震响应的影响。研究结果表明,层状岩基的横观各向同性对地震荷载下重力坝的坝踵应力影响不容忽视;层状岩基平行层面与垂直层面方向弹性模量的差异对重力坝的坝体自振频率、坝顶位移及坝踵应力影响显著;岩层倾角对坝体自振频率影响不大,但对坝顶位移及坝踵应力影响较大,倾角60°~135°对坝踵应力分布较为不利。  相似文献   

13.
在大型地震模拟振动台上,进行了两河口水电站高土石坝地震模拟振动台模型试验。通过对模型坝在振动过程中的加速度反应的量测和分析、观察坝体在振动过程中的直接反应、量测坝体在振动后的永久位移和竖向沉降,得到了两河口高土石坝模型坝在地震中的加速度反应规律,地震残余变形及分布规律和坝体破坏过程及模式等。研究表明:空间位置、输入地震波强度和类型、先期振动和蓄水等因素对坝体各测点的加速度反应规律有重要影响。大坝在地震作用下的永久水平位移和竖向沉降很小;坝体的破坏形式主要是河谷段、靠近坝顶坝坡土体的颗粒松动,发生滚石而引起的浅层滑动。  相似文献   

14.
针对地震作用下面板坝的非线性动力反应,为了准确评估大坝的极限抗震能力,从坝坡抗震稳定性、坝体震后残余变形、坝基覆盖层液化和面板接缝变形等方面探讨面板坝的地震破坏计算方法和评价标准。采用三维有限元法,对某覆盖层上高135 m的混凝土面板堆石坝进行极限抗震能力计算,结合多角度综合分析表明,大坝的极限抗震能力约为0.52g~0.54g,大坝具有较强的抗震能力。  相似文献   

15.
贺蕾铭  杜丽惠  高鑫  黄镒峰 《水力发电》2012,38(2):22-24,39
为了研究面板堆石坝在地震作用下的动力、变形特性及安全性,以潘口面板堆石坝工程为研究对象,用有限元法对其进行地震反应分析,重点研究加速度反应特性、震后残余变形及面板变形、坝体单元抗震安全性及下游坝坡的抗震安全性.分析结果表明,大坝整体抗震性能较好,满足给定地震下的抗震稳定性要求;坝顶及坝顶附近下游坡部分区域的加速度反应较大,并发生相对较大的永久变形,为该面板堆石坝工程抗震中的薄弱部位.  相似文献   

16.
冯龙龙  苏晓丽  李星 《人民黄河》2014,(10):114-116
针对面板堆石坝在地震荷载作用下坝体应力和永久变形过大以及面板接缝容易损坏的问题,采用等效线性本构模型,利用加速度时程输入的方法,对河口村面板堆石坝进行三维非线性有限元分析,给出了地震过程中大坝的地震加速度、应力、永久变形的分布图以及面板的应力、挠度和接缝变形的大小。分析结果表明,在设计水位加地震荷载工况下,坝体的抗震性较好。  相似文献   

17.
坝下涵洞是平原水库大坝中重要建筑物,其应力变形特性关系到涵洞的工作性状,同时也直接影响大坝的安全。本文采用不同的土体本构模型,利用三维非线性有限元数值计算方法对某平原水库大坝及坝下涵洞的应力变形进行了研究,并对涵洞下地基砾质土换填料及坝基土材料特性对涵洞沉降变形的影响进行了分析。根据计算分析结果,得出坝体应力变形的数值和分布符合常规土石坝的应力变形分布规律,涵管底部采用换填土料对控制涵管的沉降变形起到了较为明显的作用,涵管下部基础土体的材料特性对涵管的沉降变形仍有一定程度的影响,坝体的断面设计及设计中所采用的处理方案是可行的等结论,进一步检验了设计的合理性。  相似文献   

18.
小浪底土石坝三维地震反应分析   总被引:2,自引:0,他引:2  
根据小浪底斜心墙堆石坝坝式砂砾石以及在关坝料在循环载作用下的孔隙水压增长模型以及残余变形模型。对该坝进行三维地震反应分析。地震加速度时程线是世界世界银行咨询专家为小浪底提出的地震反应谱经过人工合成得到的。分析结果表明,在地震作用下,虽然坝踵砂砾石地基以及上游淤积土表层均有一定范围的液化破坏区,但由于坝踵液化区离大坝坝体较远,因而只影响到坝踵压戗的局部;上游反滤层局部区域有破坏的可能,但由于区域较小  相似文献   

19.
刘凤莲 《人民黄河》2012,34(7):121-123
为分析小浪底大坝的抗震性能,采用总应力法对斜墙坝型进行了二维和三维动力有限元计算,然后对改进后的斜心墙坝型进行了二维和三维有效应力地震反应计算。计算结果表明:斜心墙坝型的抗震性能优于斜墙坝型;对大坝稳定最为不利的地震工况是水库诱发地震,在可能发生最大烈度地震并假设坝基构成最为不利的情况下,小浪底大坝仅局部破坏,其整体稳定性是有保证的。  相似文献   

20.
为了评价云南省内某胶凝砂砾石坝的抗震安全性,采用反应谱法对大坝开展地震动力反应计算,获得大坝动位移、加速度和动应力分布规律。计算表明:大坝在Ⅷ度地震作用下,动位移和加速度反应分布符合一般规律,其中三向动位移极值分别为0.41 cm、0.15 cm和0.14 cm,三向加速度极值分别为9.18 m/s2、6.02 m/s2和4.47 m/s2。静动叠加后,大坝顺河向、竖向和坝轴向拉应力极值分别为0.75 MPa、2.00 MPa和0.58 MPa,顺河向、竖向和坝轴向压应力极值分别为-2.53 MPa、-1.65 MPa和-2.79 MPa,拉应力和压应力极值均小于相应筑坝材料的抗拉和抗压强度。总体上,大坝地震反应规律性好,抗震安全高,地震作用下坝体不会出现动力破坏问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号