首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 210 毫秒
1.
近期频繁发生的风电连锁脱网事故表明风电场集电系统的无功电压分布会对风电场的安全稳定运行产生很大的影响。首先介绍了风电场集电系统的概况,在此基础上分析了风电场集电系统的无功电压时空分布特性和风电功率波动对风电机组机端电压的影响。为风电场运行人员提供了运行的依据,保证了风电场的安全稳定运行,同时也为大规模风电连锁脱网事故机理研究和风电场无功电压控制奠定了基础。  相似文献   

2.
针对永磁直驱风电系统,分析了机侧和网侧变流器的控制策略。为增强风电系统低电压穿越的能力,提出一种网侧变流器运行于无功优先输出模式的控制策略。在电网电压跌落时,风电机组可依据国网公司并网技术规范要求的电网的无功电流需求以及电网电压的跌落深度迅速向电网提供无功支撑,提升电网电压。仿真结果表明该控制策略可有效提高永磁直驱风电系统的低电压穿越能力。  相似文献   

3.
酒泉风电脱网事故原因及应对措施   总被引:1,自引:0,他引:1  
针对2011年以来甘肃酒泉风电基地数起大规模风电脱网事故,从电缆头故障、风机低电压穿越能力和动态无功补偿等方面探究其原因,并提出了具体应对措施,以提高电网的安全稳定性.  相似文献   

4.
受我国风资源分布特性的影响,多数风电场接入当地输电网远距离外送,由于当地电网比较薄弱,大规模风电场群集中接入该地区电网给系统带来较大的运行风险,近年来该地区风机出现大面积脱网运行事故,突出表现了风电场接入系统无功电压稳定问题.本文对实际风场群进行等值,从机理角度分析影响风场群并网点电压稳定的因素,提出相应改进措施并加以仿真验证.  相似文献   

5.
多次发生的大规模风电机组相继脱网事故严重影响集群风电并网消纳和电网安全. 当电力系统电压出现跌落时,大容量风电场的切出会影响系统运行的稳定性,这就要求风电机组具备低电压穿越能力,以保证系统出现电压跌落时风电机组不间断并网运行. 为研究风电机组与系统的交互影响,探讨了双馈风电机组撬棒保护电阻取值、投切控制策略,并分析了低电压情况下双馈风电机组DFIG的保护控制措施与系统动态特性之间的联系. 在DIgSILENT中搭建双馈风电场分析撬棒阻值不同对风机实现低电压穿越的影响,并研究了不同故障情况下双馈风机低电压穿越特性. 本文的研究结果可以为风电机组的并网运行和电网的稳定运行提供参考.  相似文献   

6.
由于风力发电的间歇性,使得风电场升压站母线电压波动较大,因此需要装设动态无功补偿装置来稳定电压.针对大规模风电场接入电网带来的电压无功问题,提出一种基于SVG和电容器组联合运行方式下的无功控制策略.该策略以接入点为电压控制点,以扰动前的稳态电压为控制目标,在不同的电压区间内,采用不同的调压模式,充分利用SVG的动态调节能力,避免电压波动引起电容器组的频繁投切.以内蒙古某风电基地实际工程为例,通过计算分析,验证了该无功控制策略的实用性和可行性.  相似文献   

7.
针对风电场并网带来的电压稳定性问题,以双馈风电机组为研究对象,根据双馈风电机组的运行特性,对风电机组的静态电压稳定和暂态电压稳定进行了理论分析,在Matlab/Simulink中建立了双馈风电场并网系统和静止无功补偿器模型,通过绘制双馈风电机组的P-V曲线,研究随着风电场出力的增加,电网静态电压稳定性的变化情况,并通过仿真验证了静止无功补偿器对于改善风电场并网系统的静态电压稳定性和暂态稳定性的作用.  相似文献   

8.
为了应对风电接入电网引起的电压安全稳定问题,提高风电场并网点电压稳定性,从规划角度考虑,提出一种基于负荷安全域计算双馈风电场无功配置以及场内集电线路选型的方法。首先研究推导风电机组机端P—Q特性曲线,得到双馈风电机组稳定运行域。接着分析了机组P—Q特性曲线和集电线路首端安全域边界配合问题,以此确定集电线路型号,达到充分利用风电机组无功能力目的。最后通过并网点的安全域边界计算风电场无功配置容量。算例结果表明,所提出的无功配置方法能保证并网点电压在安全范围内。  相似文献   

9.
随着风电场并网容量的不断增长,作为主要无功来源的火电机组将被大量取代,电网无功电压问题日益凸显,风电场为电网提供无功辅助服务已经成为发展趋势。无功电压调差系数是风电场与火电机组响应电网无功电压变化的重要参数,对其合理整定对保证电网电压水平具有重要意义。文中在计及风电出力与负荷不确定性的基础上,建立了以改善电网电压水平为目标,考虑电网运行约束的电源无功电压调差系数整定模型,并采用鲸鱼群算法对模型进行求解。对基于IEEE-39节点系统构建的高风电渗透系统进行仿真,结果表明各电源采用整定后的无功电压调差系数,电网电压越限概率减小、电压波动水平降低。  相似文献   

10.
为提高并网直驱永磁风电机组低电压穿越运行能力,提出一种适用于双PWM变换器并网的永磁直驱风电机组低电压穿越运行的电机侧及电网侧变换器协调控制策略。电网电压跌落时,根据输入电网的电磁功率的变化控制电机侧变换器来限制发电机的电磁功率以平衡输入直流侧电容的功率,稳定直流侧电压;根据电网电压跌落深度控制电网侧变换器,提供一定的无功电流,有利于电网电压稳定与恢复,提高风电机组的低电压穿越能力。仿真结果表明,所提控制方案无需硬件装置,能有效实现永磁直驱风电机组的低电压穿越运行。  相似文献   

11.
针对风电并网对电网可靠性的影响及风机渗透率逐渐增大的问题,提出了一种基于网络化控制模型的风机并网控制策略.该控制策略根据系统的时延特点建立了时延小于一个周期的网络化控制模型,并构建了双馈型风机运行在向下功率调节模式和有小扰动时的模型,使用网络化控制方法提升了控制系统的鲁棒性.仿真结果表明,所提出的控制策略创新性地将网络化控制方法应用到风电并网调度和控制中,具有不确定、时变和有上界的特点,能满足现代电网对风机运行与调节模式的要求.  相似文献   

12.
针对传统风电机组具有齿轮箱故障率高、变流器技术复杂及谐波干扰等问题,提出基于机械液压混合传动的风力发电机组.通过理论分析系统的传动特性,建立该风力发电机组的动态模型,给出基于该传动方式的变速恒频(VSCF)控制方法.以1.5 MW并网风电机组为例,利用AMESim 与MATLAB/simulink软件对机组运行工况进行联合仿真分析.仿真结果验证了理论分析的正确性,表明提出的机械液压混合传动式风力发电系统具有变速恒频控制方法简单、载荷冲击小、功率稳定性好、传动效率较高、电网友好性好等特点.  相似文献   

13.
在Z源风力发电系统中,当电网电压发生对称跌落时,会导致Z源网络电容电压上升和交流侧过电流,严重威胁风电机组和变流器的安全,破坏系统的稳定运行。针对这一问题,提出一种适用于Z源永磁直驱发电系统在电网电压对称跌落情况下的故障穿越策略。详细分析了Z源永磁直驱系统的工作原理,建立了Z源逆变器的数学模型。在电网电压正常情况下,运用Z源电容电压外环控制和电流内环控制的双闭环控制策略,实现Z源风力发电系统的单位功率因数并网运行;在电网电压发生三相对称跌落的情况下,分析功率流动情况,将耗能crowbar电路并联在Z源网络输入端,以实现系统的低电压穿越,从而保持恒定的Z源电容电压和稳定的交流侧电流。最后,在Matlab/Simulink中搭建模型进行系统仿真,仿真结果验证了所提方法的有效性。  相似文献   

14.
新型双风轮单转子风力发电装置特性测试   总被引:1,自引:0,他引:1  
为了以更适用、更廉价的方式来提高风力发电装置的发电效率,在分析前后风轮发电功率的基础上,提出一种带齿轮结构的双风轮单转子风力发电装置,以实现风能的两级利用.车载实验结果表明:该种双风轮风力发电装置的发电功率、发电效率以及年发电量较同规格的单风轮发电装置均明显提高,其中该装置中的前轮三叶片后轮三叶片、前轮三叶片后轮四叶片及前轮三叶片后轮五叶片结构的发电效率相对于单风轮分别增加了40%、50%及38%,而年发电量则分别增加了38.06%、76.49%及73.06%,因而该装置更能高效率地利用风能.  相似文献   

15.
为了改善大规模风电并网给电网频率带来的不利影响,基于双馈风电机组的控制特性,结合转子动能与备用功率控制的特点,提出一种频率分段控制的备用功率与转子动能相协调的多层次、多周期、多环节的联合调频控制方法.电网频率发生偏移时,风机既能快速释放或吸收转子动能,又能调节桨距角,实现风电机组的频率控制.在电力系统仿真软件中搭建供电网络模型,并结合实际电网运行情况进行仿真,仿真结果表明,该方法使得风电机组对频率变化具有快速响应能力,可有效改善电网的频率特性,为双馈风电机组安全稳定并网提供了可借鉴的依据.  相似文献   

16.
电力系统风电并网中,风机需要具备低电压穿越性能,即电网电压波动时风机可以不脱离运行并向电网回馈能量,通过对三电平整流器的SVPWM的控制算法、二极管钳位型三电平变流器和电网跌落对风电变流器的影响三方面的研究,针对大功率直驱变流器提出一种基于耗能型的Crowbar电路,相比于传统保护电路和控制策略,所提出的方案增加了制动单元,并设计了其中开关管的控制方法,来实现低电压穿越的能力,并通过1.5MW的直驱风电机组及并网变流器构成并网系统验证设计的合理性.  相似文献   

17.
分析中国风电调度运行问题、风电出力特性、风电场有功控制现状,提出大型集群风电有功智能控制系统的控制策略,介绍大型集群风电有功智能控制系统的配置、功能、控制策略原则以及控制方法.该控制系统已经投入现场运行并取得了很好的控制效果,各风电场发电量得到了普遍提高,既保证了风能这一绿色能源得到有效开发和充分利用,又保证了电网安全...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号