首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 164 毫秒
1.
耐热铝合金(FVS0812)板材温拉伸本构方程   总被引:8,自引:3,他引:8  
通过在523K~723K的温度范围内和应变速率为0.001s-1~0.1s-1下对耐热铝合金(FVS0812)板进行温拉伸实验,研究耐热铝合金板温拉伸性能,以及该合金在升温条件下流变应力与变形温度、应变速率之间的关系,并使用改进了的Fields and Backofen方程建立FVS0812合金在温拉伸时应力-应变本构模型。  相似文献   

2.
采用Gleeble-1500D热模拟机对Mg-8Li-2Al-1Zn合金进行热压缩实验,研究了变形温度为523~723 K、应变速率为0.01~10 s-1条件下的合金热变形行为,并建立了合金的流变应力本构方程及热加工图。结果表明:Mg-8Li-2Al-1Zn合金的流变曲线均属于动态再结晶型,流变应力随着温度升高(应变速率降低)而减小。显微组织的变化验证了动态回复和动态再结晶的发生。Mg-8Li-2Al-1Zn合金流变应力本构关系可以用双曲正弦函数和Z参数准确的描述,平均应力指数为4.62,平均热激活能为139.35 J/mol。根据建立的加工图,预测合金热变形的最佳工艺参数为:523~573 K,0.1~1 s-1。  相似文献   

3.
利用Gleeble3500热模拟试验机研究了Ca对Mg-Gd-Y-Zn-Zr合金在变形温度573~723 K,应变速率0.001~1 s-1的热变形行为及热加工性能的影响。结果表明:Ca增大了合金的流变应力及变形激活能,扩宽了加工安全区及最佳加工区范围,但降低了最大功率耗散因子及动态再结晶程度。结合激光共聚焦显微镜分析了合金热压缩后组织,验证了热加工图的准确性,并制定了合理的热加工工艺,Mg-Gd-Y-Zn-Zr合金的最佳加工区域为:应变速率0.001~0.01 s~(-1),温度623~723 K。根据最佳加工工艺参数获得了表面质量良好,无变形缺陷的等温锻造合金。  相似文献   

4.
在温度523 K~723 K和应变速率0.001 s-1~1 s-1范围内,对均匀化态的Mg-5.9Zn-1.6Zr-0.9Y-1.6Nd合金进行等温恒应变速率压缩试验,并获得了应力-应变曲线。研究了变形工艺参数对该合金流变应力的影响规律,建立了流变应力的反向传播(BP)神经网络预测(ANN)模型。结果表明,Mg-5.9Zn-1.6Zr-0.9Y-1.6Nd合金在变形过程中真应力随变形温度的升高而降低,随应变速率升高而升高。神经网络模型能精确地预测热压缩过程中的流变应力,通过预测模型可以获得样本数据值范围内的非样本数据变形条件下的流变应力值,其预测结果充分反映了该合金在高温变形特征,平均误差为1.2%。  相似文献   

5.
汽车用5182铝合金温变形行为及组织   总被引:1,自引:0,他引:1  
通过单向温拉伸试验以及扫描电镜和透射电镜观察,研究了汽车用5182铝合金板在变形温度为323~573 K,应变速率为0.001~0.1 s-1条件下的流变行为及微观组织。结果表明,在变形温度≥448 K、应变速率.ε=0.001 s-1条件下,5182合金出现明显的峰值应力,而当应变速率0.01~0.1 s-1时,合金的流变应力呈现稳态;当应变速率.ε=0.001 s-1时,随着变形温度的升高,合金单向温拉伸断口由典型的混合型断裂特征演变成典型的韧性断裂特征,合金产生了动态再结晶。  相似文献   

6.
在Gleeble-1500热/力模拟机上,对Mg-10Gd-4.8Y-0.6Zr镁合金进行高温压缩试验,压缩时设定应变速率范围为0.001~1 s-1,温度范围为623~773 K,最大真应变为1.3;研究该合金高温变形时流变应力与应变速率、变形温度之间的关系及变形过程中的微观组织演化;计算塑性变形表观激活能及相应的应力指数;建立该合金的加工图。结果表明:在该合金的加工图中,功率耗散系数η随应变速率的降低及温度的升高而不断增加,失稳区域随应变量的增加而扩大;综合得出该合金的最佳实际变形工艺为温度723~773 K、应变速率0.1~1 s-1。  相似文献   

7.
Mg-Y-Nd-Gd-Zr合金的热变形和加工图   总被引:1,自引:1,他引:0  
采用GLEEBLE-1500热模拟实验机对Mg-Y-Nd-Gd-Zr合金在变形温度为523~723 K、应变速率为0.002~1.000 s-1、最大变形程度为50%的条件下,进行了高温压缩试验研究.采用指数关系式描述了合金在热变形过程中的稳态流变应力.利用动态材料模型构建了热加工图,结合组织观察结果认为,该合金在变形温度为673 K、应变速率为1.000 s-1时功率耗散效率达到峰值0.36,因此,中温高应变速率区域为最佳加工性能区域.要想获得较大范围的最佳加工性能区域,应采用多道次小变形量进行加工.  相似文献   

8.
研究了ZK31-1.5Y镁合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的热压缩变形特性,基于动态材料模型建立了热加工图,并结合真应力-真应变曲线确定了该合金在实验条件下的热变形机制及最佳工艺参数。结果表明:ZK31-1.5Y合金的真应力-真应变曲线主要以动态再结晶和动态回复软化机制为特征,峰值应力和稳态应力随变形温度的降低或应变速率的升高显著增加。合金功率耗散图和失稳图中分别包含了3个效率峰值区和1个马鞍形流变失稳区,峰区效率范围为38%~65%,叠加后形成的加工图给出了实验参数范围内热变形时的最优工艺参数,其热变形温度为350~450℃、应变速率为0.1~1 s-1。当应变量由0.1~0.6逐渐增大时对加工图分布规律影响不大。  相似文献   

9.
在温度523~723 K和应变速率0.001~1 s-1范围内,利用Geeble-1500热模拟试验机,对均匀化态的Mg-5.9Zn-1.6Zr-0.9Y-1.6Nd合金进行等温压缩试验,并获得了应力应变曲线。研究了变形工艺参数对该合金流变应力的影响规律,计算了热变形激活能,建立了本构模型。结果表明,Mg-5.9Zn-1.6Zr-0.9Y-1.6Nd合金在变形过程中真应力随变形温度的升高而降低,随应变速率升高而升高,该合金的流变应力曲线可以用双曲正弦函数来描述。并求得该合金的热变形激活能为181.902 6 k J/mol。  相似文献   

10.
为了研究稀土钇(Y)对铸态ZK30镁合金高温塑性变形行为的影响,在变形温度为573~723 K、应变速率为0.001~1 s-1条件下,通过Gleeble热力模拟试验机对其进行了一系列恒温压缩实验,结合组织观察,研究了添加Y质量分数1.5%对合金组织结构、流变行为、本构参数及高温塑性变形行为的影响。研究显示,Y细化了铸态合金晶粒,三角晶界处共晶产物明显增多、并演变为清晰的块状、网状结构;Y未对合金流变应力曲线的特征产生显著影响,但引起流变应力水平、峰值应力普遍增大。根据双曲正弦函数,线性拟合确定了Y添加前后合金的本构参数,建立了定量描述流变应力同变形温度和应变速率之间关系的本构方程,其中Y使应力指数(n=5.778)、表观变形激活能(Q=181.082k J·mol-1)的平均值增幅超过14.2%和21.6%,表明Y导致合金塑性变形抗力增大。另外,高温压缩后的组织显示,Y有利于促使合金发生动态再结晶,晶界处再结晶晶粒增多、晶粒更细小,表明含稀土Y第二相影响了晶界界面迁移。  相似文献   

11.
ZK60及ZK60 (0.9Y)镁合金高温变形行为的热模拟研究   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机进行压缩试验,研究ZK60和ZK60(0.9Y)镁合金在变形温度为473~723K、应变速率为0.001~1s-1范围内的变形行为,计算了应力指数和变形激活能,并采用Zener-Hollomon参数法构建了合金高温塑性变形的本构关系。结果表明:在试验变形条件范围内,合金的真应力-真应变曲线为动态再结晶型;在573~723K范围内,应力指数随着变形温度的升高而增加,变形激活能随着变形温度和应变速率的改变而变化。对比ZK60合金,ZK60(0.9Y)合金的变形激活能降低了30%,且材料常数n和A值均降低。  相似文献   

12.
为确定镁合金AZ61热变形特性与制定合理的成形工艺参数,利用Gleeble-1500热模拟试验机研究该材料在变形温度523K~673K和应变速率0.001s-1~1s-1下的流变应力行为。根据实验数据,确定热变形激活能,建立峰值应力与温度和应变速率的关系式。采用两种不同方法,分别建立任意时刻流变应力与温度、应变速率和应变的关系式,并验证了流变应力方程的准确性。研究结果表明,直接考虑应变对应力的影响模型相对误差为5.46%,通过动态再结晶分数间接考虑应变对应力的影响模型相对误差为5.42%,两种模型的预测值均与实验值较吻合。  相似文献   

13.
采用Gleeble-1500D热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度850~980℃、应变速率为0.001~10 s-1、变形量为50%条件下的热变形行为.根据应力-应变曲线分析了该合金的流变应力变化特点,建立了该合金的Arrhenius型本构方程及加工图.结果表明:流变应力随变形温度降低及应变速率增大而升高;变形温度与应变速率对TC4-DT合金应力影响显著;本实验测得的平均激活能为587.2 kJ/mol;该合金合适的加工条件为ε<0.6 s-1,温度大于850℃.  相似文献   

14.
针对7085铝合金航空构件的热加工工艺问题,对7085铝合金在300~450℃和0.0001~1 s-1条件下进行等温压缩实验,建立了7085铝合金热加工图并且分析了7085铝合金热成形性.结果表明:温度340~450℃、应变速率0.0001~1s-1为加工安全区;失稳区域为温度300~340℃、应变速率0.01~1 s-1,在此区域加工时,形成绝热剪切带且带内组织为剧烈拉长晶粒;潜在危险加工区域为温度300~340℃、应变速率0.0001~0.01 s-1;建议在温度340~410℃、应变速率0.0004~1 s-1选择工艺参数.  相似文献   

15.
在Gleeble-3500热模拟试验机上进行了挤压态Al-12Zn-2.4Mg-1.2Cu合金的等温压缩试验,获得了温度523~723 K、真应变0.1~0.6和应变速率0.001, 0.01, 0.1和1 s-1下的应力应变试验数据。基于Arrhenius本构模型,采用了含有Zener-Holloman参数的幂指数方程来描述温度和应变速率对流变行为的影响。采用线性回归分析的方法,研究了不同温度和应变速率下,材料常数随应变的变化规律。结果表明:除加工硬化率n外,其他材料常数Q,α,β和lnA3的数值均随着应变数值的增大而呈现出增大趋势;同时拟合出不同试验条件下不同材料常数的应变补偿方程,并借助于调整判定系数进行了应变补偿材料常数方程的拟合优度分析,在此基础上建立了试验合金的应变补偿本构模型。通过对比,分析了不同试验条件下的真实应力-应变曲线和建立模型的预测应力-应变曲线,并以相关系数R和平均绝对误差(AARE)为评价因子研究了考虑应变补偿Arrhenius本构模型的可靠性和适宜性,预测结果与试验结果相比较的R和AARE数值分别为0.995 82和6.66%,表明该模型精度高,可靠性好。  相似文献   

16.
AZ31镁合金热变形流动应力预测模型   总被引:1,自引:0,他引:1  
采用近等温单轴压缩实验获得了AZ3l镁合金变形温度为523 723 K,应变速率为0.01—10 s-1条件下的流动应力,分析了变形温度和应变速率对流动应力的影响规律.结果表明,AZ31镁合金变形过程中发生了动态再结晶,523 K时形成细小组织;而723 K时动态再结晶和长大的晶粒沿径向拉长.考虑实验过程塑性变形功和摩擦功引起的温度升高,在高应变速率条件下采用温度补偿修正了流动应力.在此基础上,建立了基于双曲正弦模型的峰值流动应力和统一本构关系,该模型利用材料参数耦合应变来描述流动应力的应变敏感性,进一步获得了合金热变形过程中流动应力与变形温度、应变速率和应变的定量关系.采用该本构关系模型预测流动应力具有较高的精度,预测值与实测值相关系数为0.976,平均相对误差为5.07%,实验条件范围内预测的流动应力与实验值几乎能保持一致.  相似文献   

17.
在SINTECH20/G拉伸试验机上对Zn-Al10-Cu2锌合金进行等温拉伸实验,研究该合金在变形温度为210℃~300℃、应变速率为0.001s-1~0.1s-1条件下的变形行为和拉伸力学性能。结果表明,峰值应力随温度升高而降低,随应变速率的提高而增大。通过线性回归分析,得出流变应力σ解析表达式,其中A、α和n值分别为6.63×1012s-1、0.0108MPa-1和4.81,其热变形激活能Q=150.127kJ/mol。该合金在温度为300℃、应变速率为0.001s-1时,出现超塑性趋势。  相似文献   

18.
为了获得BFe10-1-2白铜合金的合理热变形工艺参数,通过热模拟压缩试验对该合金的高温变形行为进行了研究。试验温度为1023~1273K,应变速率为0.001~10s-1。通过流变曲线分析、动力学分析及加工图对BFe10-1-2白铜合金的高温变形行为进行了表征,计算出BFe10-1-2白铜合金在热压缩变形过程中的激活能为425.299KJ/mol。通过Zener-Holloman参数以及真应变建立了BFe10-1-2白铜合金的本构方程用以描述该合金的高温流动应力。对计算的流动应力值与试验值进行了对比,结果表明:本构方程可以准确描述该合金的高温流动行为。此外,基于动态模型,建立了BFe10-1-2白铜合金的热加工图,并通过宏观及微观组织分析对加工图的准确性进行了验证。  相似文献   

19.
超细晶不锈钢/TiC复合材料的电化学腐蚀行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热/力模拟试验机进行压缩试验,研究了Mg-6Zn-1Mn合金在变形温度250~450℃、应变速率0.001~10 s-1范围内的流变应力行为,采用Zener-Hollomon参数法构建合金高温塑性变形的本构关系;并以热压缩试验为基础,建立并初步分析了Mg-6Zn-1Mn合金的DMM加工图.结果表明:Mg-6Zn-1Mn合金在热压缩过程中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与试验值较吻合;建立的加工图表明合金高温变形时存在2个失稳区域,而在温度325~425℃、应变速率0.01~0.365 s-1范围内出现1个非失稳区、功率耗散峰值区,该区域最适合Mg-6Zn-1Mn合金进行热加工.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号