首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
Ti-Hf binary alloys contained 10%, 20%, 30% and 40% (mass fraction)Hf were manufactured in the vacuum furnace system. And then, specimens were homogenized for 24 h at 1 000 °C in argon atmosphere. The formation of oxide nanotubes was conducted by anodic oxidation on the Ti-Hf alloy in 1 mol/L H3PO4 electrolytes containing small amounts of NaF at room temperature. The hydroxyapatite (HA) coating made of tooth ash prepared by electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the specimens were examined through potentiodynamic test in 0.9% NaCl solution by potentiostat. The microstructures of the alloys were examined by field emission scanning electron microscopy (FE-SEM) and x-ray diffractometer (XRD). It was observed that the lamellar structure translated to needle-like structure with Hf contents. Nanotube formed and HA coated Ti-xHf alloys had a good corrosion resistance.  相似文献   

2.
In order to investigate the nanostructures and corrosion behaviors of Ti-Zr alloys, nanotube formed Ti-Zr(10%, 20%, 30% and 40% in mass fraction) alloys were prepared by arc melting and the condition of controlling nanostructure was at 1 000 °C for 24 h in argon atmosphere; formation of nanotubes was conducted by anodizing a Ti-Zr alloy in H3PO4 electrolyte with a small amount of fluoride ions at room temperature. The corrosion properties of specimens were examined through potentiodynamic test (potential range of −1 500–2 000 mV) in 0.9% NaCl solution by using potentiostat. Microstructures of the alloys were observed by optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). Diameter of nanotube does not depend on Zr content, but interspace of nanotube predominantly depends on Zr content, which confirms that ZrO2 oxides play a role to increase the interspace of nanotube formed on the surface.  相似文献   

3.
In order to improve the high-temperature mechanical properties of NiAl/Cr(Mo) alloys, the effects of Hf additions on microstructure and mechanical properties were systemically examined. Two directionally solidified alloys with composition of Ni-32Al-28Cr-(6−x)Mo-xHf (x = 0.2 and 0.5 at.%, respectively), named as 0.2Hf and 0.5Hf hereafter, were prepared. The Hf additions disturbed the cellular structure. The 0.2Hf alloy consisted of dendritic structure, while the 0.5Hf alloy had an intercellular structure. In the 0.5Hf alloy, the Ni2AlHf and Ni16Hf6Si7 precipitates were also confirmed. The high-temperature strength and brittle-to-ductile transition temperature (BDTT) increased with increasing of Hf additions, due to the different strengthening mechanism. In contrast, the ductility and creep resistance decreased with increasing of Hf because of the disturbance of cellular structure.  相似文献   

4.
Laser surface nitriding of Ti–6Al–4V alloy was carried out with a Nd:YAG pulsed laser. The microstructure and corrosion behaviour of the nitrided samples were examined, using SEM, XRD, XPS, and anodic polarization tests in 2 M HCl solution. Laser nitriding produced a thin continuous TiN layer followed by TiN dendrites and TiN0.3 needles. The laser nitrided specimen exhibited less corrosion current density, passivated more readily and also, maintained a lower current density over the duration of the experiment. This was correlated with the formation of very thin, continuous TiNxOy film, which could retard chloride ions ingress into the substrate.  相似文献   

5.
The corrosion behaviour of two Mg–9Al–Ho alloys (Mg–9Al–0.24Ho and Mg–9Al–0.44Ho) was evaluated by general corrosion measurements and electrochemical methods in 3.5% NaCl solution saturated with Mg(OH)2. The experimental results were compared with that of Mg–9Al alloy without Ho addition. Various corrosion rate tests showed that the addition of Ho obviously enhanced corrosion resistance of Mg–9Al alloy. The microstructure of the three magnesium alloys and the morphology of their corrosion product film were examined by Electron Probe Microanalysis (EPMA) and Energy Dispersion Spectroscopy (EDS). The alloys with Ho addition showed a microstructure characterized by α phase solid solution, which was surrounded by some β phase and grain-like Ho-containing phase. The improvement of corrosion resistance of the Mg–9Al–Ho alloys could be explained by the fact that the deposited Ho-containing phases were less cathodic. Moreover, the corrosion product films on the Ho-containing alloy surface demonstrated their ability to restrain further corrosion.  相似文献   

6.
In order to study the electrochemical behaviors of TiN film coated Ti−Nb alloys for dental materials, Ti containing Nb up to 3, 20, and 40 wt.% was melted by a vacuum furnace and coated with TiN by EB-PVD. the electrochemical behaviors were investigated using a potentiostat in 0.9% NaCl solution and the corrosion surface was observed using SEM and XPS. Ti−3Nb and Ti−20Nb alloys have α+β phase structure. In the case of Ti−40Nb, the microstructure had a coarse β phase. The microstructural changed from equiaxed to acicular and an increase of β-phase in Ti−Nb alloys was observed with increased Nb content. The current density at 300 mV (potential of oral environment) of Ti−40Nb alloy was lower than that of the other alloys in 0.9% NaCl. The pitting corrosion resistance of Ti−40Nb was higher than that of Ti−3Nb and Ti−20Nb alloys in the 0.9% NaCl solution. The corrosion potential and pitting potential of TiN coated Ti alloy increased with increasing Nb content but the current density at 300 mV and the current density at the passive region decreased. The TiN coated Ti−40Nb alloy offers good corrosion resistance for dental implants compared with non-TiN coats alloys.  相似文献   

7.
Ti–Hf alloys with Hf contents of 10, 20, 30, and 40 mass% were prepared by a tri-arc furnace and homogenized at 1273 K for 21.6 ks, and then these alloys were cold rolled into 3-mm-thick plates. The alloy specimens were subjected to a solution treatment in a vacuum at 1223 K for 3.6 ks and then rapidly quenched in ice water before corrosion tests. The corrosion resistance of these alloys was investigated by studying the anodic polarization curves at 310 K in 5% HCl solution to determine the potential use of these alloys in biomedical applications. The passive films formed on the surfaces of the alloys were examined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. The results reveal that all the Ti–Hf alloys exhibit a passive behavior in 5% HCl solution, which is attributed to the passive film formation of a mixture of both HfO2 and TiO2. The corrosion resistance of the Ti–Hf alloys gently increases with the Hf content and the Ti–Hf alloys exhibit better corrosion resistance than commercial pure (CP) Ti—the currently-used metallic biomaterial.  相似文献   

8.
The aim of this study was to investigate the effects of Hf content and immersion time on the electrochemical corrosion behavior of the Ti-22Nb-xHf (x = 0, 2, 4, and 6 at%) alloy samples in 0.9% NaCl solution at 37 °C and neutral pH range, utilizing the potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. From the polarization curves, all these alloys exhibited typical passive behavior, which was indicated by a wide passive region without the breakdown of the passive films and low corrosion current densities. In addition, the values of the corrosion current densities and passive current densities decreased with increase in the Hf content. The EIS results, fitted by RS(QPRP) model, exhibited capacitive behavior (high corrosion resistance) with phase angles closed to −80° and high impedance values at low and medium frequencies, indicating the formation of a highly stable film on these alloys in the test solution. The resistance of the passive films improved with increase in the Hf content and immersion time. All these observations suggested a more noble electrochemical behavior of the Ti-22Nb-xHf alloys compared to the Ti-Nb binary alloy.  相似文献   

9.
In this study, an Nd:YAG laser was used to carry out laser surface remelting treatment on FeCrNiMnMox (x = 0, 0.5, 1) alloys. A study was conducted on the potential impact of Mo on the microstructure and corrosion resistance of the laser-remelted layer. According to the research results, FeCrNiMnMox alloys were more effective in refining the dendrites, compared with the matrix, whereas the FeCrNiMn alloys' remelted layer exhibited an almost single face-centered cubic (FCC) structure. In comparison, FeCrNiMnMo0.5 and FeCrNiMnMo1 alloys' remelted layer displayed the FCC and σ phase. In addition, the dendrite crystals' microstructure can be clearly refined by Mo alloying. Mo is effective in improving the corrosion resistance of the FeCrNiMnMox alloys' remelted layer in 3.5% NaCl solution. The pitting resistance of Mo-containing-remelted layers is significantly higher, compared with Mo-free alloy's remelted layer, and the FeCrNiMnMo0.5-remelted layer shows the most satisfactory corrosion resistance. As revealed by X-ray photoelectron spectroscopy analyses, the addition of molybdenum promotes the generation of Cr2O3 and enhances the corrosion resistance of the remelted layer.  相似文献   

10.
The crystal structure of HfZrP has been determined using single crystal X-ray diffraction data. This compound crystallizes in the orthorhombic space group Cmmm (No.65), with a=19.004(3), b=29.372(4), c=3.565(1) Å and the Zr2P structure type. The Hf and Zr atoms are disordered on one site with total occupancy of 1.0. X-ray powder patterns indicate that (HfxZr1−x)2P alloys consist of single phase (Zr2P-type),two phases and single phase (Hf2P-type) corresponding to 0≤x≤0.5, 0.5<x<0.8 and 0.8≤x≤1.0, respectively.  相似文献   

11.
In order to improve the non-uniform corrosion of Al–0.5Zn–0.03In–1Mg–0.05Ti alloys, Al–5Zn–0.03In–1Mg–0.05Ti–xLa (x = 0.3, 0.5 and 0.7 wt.%) alloys were developed. Microstructures and electrochemical properties of the alloys were investigated. The results show that the optimal microstructures and electrochemical properties are obtained in Al–5Zn–0.03In–1Mg–0.05Ti–0.5La alloy. The main precipitate phase is Al2LaZn2 particles. The excellent electrochemical properties of Al–5Zn–0.03In–1Mg–0.05Ti–0.5La alloy is mainly attributed to fine grains and grain boundaries containing fine Al2LaZn2 precipitates. At the same time the fine grains can improve the non-uniform corrosion of Al–0.5Zn–0.03In–1Mg–0.05Ti alloy.  相似文献   

12.
Mg–2·2Nd–xSr–0·3Zr alloys (wt-%, x?=?0, 0·4, 0·7 and 2·0) were prepared by gravity casting to study the effects of Sr addition on the microstructure and corrosion resistance of Mg–Nd–Zr alloys in simulated body fluid (SBF). Phases were identified by X-ray diffraction, and microstructure was observed with optical microscopy and scanning electron microscopy. Corrosion resistance of the alloys was determined by evaluating mass loss and hydrogen evolution during immersion in SBF. Mg17Sr2 phase was formed, and the grain size decreased with additional Sr addition. For the grain refinement and more continuous second phase, which could improve the corrosion resistance, the alloy with 0·7 wt-%Sr showed the slowest corrosion rate, whereas the alloy with 2·0 wt-% showed the fastest corrosion rate due to the increased volume fraction of Mg17Sr2, which led to severe local microgalvanic corrosion.  相似文献   

13.
采用动电位极化和恒电流曲线测试合金元素Ga和In对Mg阳极材料电化学性能的影响。采用扫描电镜法分析Mg?In?Ga合金的显微组织和腐蚀表面,并用X射线衍射法检测Mg?0.8%In合金和Mg?0.8%Ga?0.3%In 合金的腐蚀产物。结果表明:Mg?xIn (x=0?0.8%)合金中没有第二相出现,Mg?0.8%In?xGa (x=0?0.8%)合金中存在富含Ga和In元素的晶间化合物。合金元素In和0.05%?0.5%Ga的添加提高了镁阳极的耐腐蚀性能,Ga元素的添加更促进了Mg?In合金的电化学活性。Mg?0.8%In?0.8%Ga合金的平均电位最负,为?1.682 V,此电位比AZ91D合金的?1.406 V更负。Mg?In?Ga合金的腐蚀类型是全面腐蚀,其腐蚀产物是Mg(OH)2。  相似文献   

14.
The TiN/Ni composite coatings were deposited on 7005 aluminium alloy by high speed jet electroplating and then processed with plasma transferred arc(PTA) scanning process. The microstructure, microhardness and friction coefficient of PTA scanning treated specimens were investigated. It is shown that the PTA scanning treated specimens have a rapidly solidified microstructure consisting of the uniformly distributed TiN phase and fine Al3Ni2 intermetallic phases. The composite coating has an average microhardness of approximately HV 800. The friction coefficient of PTA scanning treated specimens (oscillated at around 0.25) is considerably lower than that of TiN/Ni composite coating (oscillated at around 0.35). The corrosion behavior of the composite coating in 3.5% NaCl solution at room temperature was also determined using a potentiostat system. In comparison with the corrosion potential corr of −0.753 V for 7005 aluminium alloy, the corrosion potentials for TiN/Ti composite coating and PTA scanning treated specimen are increased by 0.148 V and 0.305 V, respectively. The PTA scanning treated specimen has the lowest corrosion current densityJcorr as well as the highest corrosion potential corr, showing an improved corrosion resistance compared with 7005 aluminium alloy.  相似文献   

15.
采用真空电弧熔炼法制备了不同Zr含量的FeCoCrNiZrxx=0.5,0.75,1)高熵合金。研究了Zr含量对合金组织、磁性能和电化学腐蚀性能的影响。采用X射线衍射仪、扫描电镜、振动样品磁力计和电化学工作站对合金的磁性能和电化学腐蚀能力进行了研究。结果表明:FeCoCrNiZrx合金具有典型的共晶组织,由面心立方固溶体和C15 Laves相组成。随着Zr含量的增加,合金硬度呈先增大后减小的趋势。根据合成的静态滞回曲线可以看出,FeCoCrNiZr0.5合金具有顺磁性和铁磁性的混合型特征,FeCoCrNiZr0.75合金表现为顺磁性,FeCoCrNiZr1合金表现为典型的铁磁性。同时,FeCoCrNiZrx合金在3.5%(质量分数)NaCl溶液中经历活化与钝化转变。当合金中的Zr含量为0.75%(原子分数)时,合金极化电阻具有最大的阻抗电容半径,钝化膜的耐腐蚀能力最强。  相似文献   

16.
In order to minimise corrosion at high temperatures metallic or intermetallic Al‐ and/or Cr‐rich protective coatings are applied to metallic alloys. Protection against corrosion is achieved by the formation of a continuous Al2O3 and/or Cr2O3 layer. Progressive scale formation, as well as interdiffusion between the coating and the substrate during long operating stages depletes the scale‐forming elements, Al and Cr. The decrease of their concentration below a critical value is followed by accelerated corrosion and rapid breakdown of the component. Non‐destructive depletion measurement is not possible, because of the absence of suitable materials that serve simultaneously as depletion sensors and reservoir phases. In a novel development, protective high temperature coatings containing a magnetic phase which at the same time acts as a reservoir phase are used as a depletion sensor. The alloy surface is coated with the magnetic substance either by reactive magnetron co‐sputtering or by using pack cementation. In the course of operation, the formation of a protective oxide scale depletes the reservoir and the measured magnetic signal decreases. Measurement of the change of the coating's magnetic signal enables in situ assessment and non‐destructive detection of depletion. In order to avoid perturbances in the magnetic signal coming from the coating the metallic substrate must be non‐magnetic. Therefore this concept is restricted to Cr/Ni‐austenitic steels and Ni‐base alloys. Doping of AlN with transition metals (Al1 ? xMexN, Me = Cr, Co, Mn, x = 2–7 at%) makes it a suitable magnetic reservoir phase, i.e. Al‐ and/or Cr‐containing. Furthermore, it is ferromagnetic, has a high Curie temperature and is magnetically soft. Samples of Alloy 800 and Alloy 602 CA were coated with Al1 ? xCrxN (x = 2 and 3 at%) using both pack cementation and PVD. Measurements of the magnetic moments of the coatings at temperatures up to 300 °C show very soft ferromagnetic behaviour. Coatings on different substrates with Al1 ? xMnxN, Al1 ? xCoxN (x = 2–7 at%) and Al1 ? xCrxN with higher Cr contents (x = 4–7%) are underway. Investigations of the magnetic properties of the coatings at temperatures up to the Curie point are also in progress.  相似文献   

17.
Amorphous Fe–B alloys can be prepared at room temperature by reduction with borohydride of iron-oxide particles in suspension. By varying the borohydride concentration, amorphous Fe–B alloys with boron contents between 2 and 13 at.% have been produced by reduction of synthetic (nano-sized particles) and natural (micro-sized) hematite (α-Fe2O3) using sodium borohydride (NaBH4). The results presented in this paper were obtained from a systematic study of the effect of borohydride concentration on the resulting reaction products using a variety of experimental techniques, such as X-ray diffraction, wet chemical analyses, thermal analyses, scanning electron microscopy, transmission Mössbauer spectroscopy (TMS) and integral low-energy electron Mössbauer spectroscopy (ILEEMS). Three distinct NaBH4 concentrations have been applied. Beside unreacted hematite, amorphous Fe1−xBx alloys have been identified from the TMS spectra recorded at various temperatures between 15 K and room temperature. The amount of Fe1−xBx increases strongly with increasing NaBH4 concentration, and for a given concentration with increasing specific surface area (SSA). Thermal analyses have suggested that for any given reduction condition, the boron content x in the formed amorphous alloy has a bimodal distribution. This is found to be consistent with the finding that the contribution of the Fe1−xBx phase to the total Mössbauer spectra consists of a superposition of a broad sextet and doublet. ILEEMS has further revealed that especially the surface layers of the hematite grains are affected by the reduction processes.  相似文献   

18.
To elucidate the effects of Fe on the Ti–V-based hydrogen storage electrode alloys, the Ti0.8Zr0.2V2.7−xMn0.5Cr0.8Ni1.0Fex (x = 0.0–0.5) alloys were prepared and their structures and electrochemical properties were systematically investigated. XRD results show that all the alloys consist of a C14 Laves phase with hexagonal structure and a V-based solid solution phase with bcc structure. With increasing Fe content, the abundance of the C14 Laves phase gradually decreases from 43.4 wt% (x = 0.0) to 28.5 wt% (x = 0.5), on the contrary, that of the V-based solid solution phase monotonously increases from 56.6 wt% to 71.5 wt%. In addition, SEM observation finds that the grain size of the V-based solid solution phase is first gradually reduced and then enlarged with increasing x. Electrochemical investigations indicate that the substitution of Fe for V markedly improves the cycling stability and the high rate dischargeability of the alloy electrodes, but decreases the maximum discharge capacity and the activation performance. Further electrochemical impedance spectra, the linear polarization curve and the potentiostatic step discharge measurements reveal that the electrochemical kinetics of the alloy electrodes should be jointly controlled by the charge-transfer reaction rate on the alloy surface and the hydrogen diffusion rate in the bulk of the alloys. For the alloy electrodes with the lower Fe content (x = 0.0–0.2), the hydrogen diffusion in the bulk of the alloys should be the rate-determining step of its discharge process, and while x increases from 0.3 to 0.5, the charge-transfer reaction on the alloy surface becomes to the rate-determining step, which induces that the electrochemical kinetics of the alloy electrodes is firstly improved and then decreased with increasing Fe content.  相似文献   

19.
Ternary Fe86NixMn14−x alloys, where x = 0, 2, 4, 6, 8, 10, 12, 14, 16 at.%, were prepared by the mechanical alloying (MA) of elemental powders in a high-energy planetary ball mill. X-ray diffraction analysis and Mössbauer spectroscopy were used to investigate the structure and phase composition of samples. Thermo-magnetic measurements were used to study the phase transformation temperatures. The MA results in the formation of bcc α-Fe and fcc γ-Fe based solid solutions, the hcp phase was not observed after MA. As-milled alloys were annealed with further cooling to ambient or liquid nitrogen temperatures. A significant decrease in martensitic points for the MA alloys was observed that was attributed to the nanocrystalline structure formation.  相似文献   

20.
Titanium incorporated amorphous carbon nitride films were deposited by direct current magnetron sputtering. The films change from amorphous to nanocomposite structure, the relative fraction of sp3 C-N bonding decreases significantly from 2.17 to 1.64 with the increase of Ti content from 2.7 at.% to 12.3 at.%. For the films with high Ti content, the nanocrystalline TiN embedded in a-CNx matrix, while principally TiN did not appear to be well formed for the film containing low Ti content. Potentiodynamic polarization, in vitro human osteoblasts and murine fibroblast cell adhesion tests were employed to assess the corrosion performances of Ti6Al4V alloy coated with the films in Tyrode's solution, and the biocompatibility of Ti-incorporated a-CNx films, respectively. Titanium incorporation increases the corrosion resistance of a-CNx films, and the higher corrosion potential and lower corrosion current density are observed for the alloy coated with the film containing lower Ti content. The high osteoblast adhesion and activation demonstrate the enhanced biocompatibility of Ti alloy coated with Ti-incorporated a-CNx films. The improved biocompatibility in biological environment is attributed to structural change after titanium introduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号