首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在0.04 MPa氦气保护下,采用中频感应熔炼炉冶炼了,以少量Y和Cu分别替代部分Mg和Ni的Mg_2Ni型储氢合金,并对合金的结构形貌、相组成、气态吸氢活化与性能进行了系统的研究。研究结果表明:铸态Mg_(22)Y_2Ni_(10)Cu_2合金具有典型的片层状共晶组织特征,其组成相为Mg_2Ni,YMgNi_4和少量的Mg相;合金在3 MPa,300℃下5次吸放氢完全活化,Mg和Mg_2Ni相能够可逆吸放氢,但在首次活化过程中,Mg_2Ni相只有部分转变为Mg_2NiH_4,而Mg相则能够完全转变为MgH_2;同时发现YMgNi_4相虽多次吸放氢循环后,都未发现有非晶化现象发生,表明该相与REMgNi_4(RE=La,Nd)等其他拉弗斯相相比,具有更高的结构稳定性;合金的吸氢动力学曲线用Avrami-Erofofeev法拟合后表明合金吸氢是一维形核和长大过程;测试了合金的平衡压力-浓度等温(PCT)曲线,计算合金的热力学参数为Mg相的氢化焓变(ΔH)和熵变(ΔS)分别为-78.1 kJ·mol~(-1),-133.9J·K~(-1)·mol~(-1),而Mg_2Ni相的氢化ΔH和ΔS则分别为-51.8 kJ·mol~(-1),-103.0J·K~(-1)·mol~(-1),合金的热力学性能明显改善,表明添加Y和Cu对Mg_2Ni型合金的吸氢性能具有一定的催化作用。  相似文献   

2.
利用磁悬浮感应熔炼法制备了Y_(1-x)Ce_xFe_2(x=0,0.15,0.25,和0.50)合金,通过X射线衍射分析(XRD)、扫描电镜(SEM)、电子探针(EPMA)和定容法等测试方法,研究了Ce替代Y对Y_(1-x)Ce_xFe_2合金吸氢性能的影响。研究表明,Y_(1-x)Ce_xFe_2合金为多相结构,主相为MgCu_2型结构的YFe_2相,同时还含有Pu Ni3型结构的YFe_3第二相,且Ce元素有效替代了合金中的Y元素;当x≦0.25时,随着Ce替代量的增加,合金中YFe_3相增多,且合金的吸氢动力学性能和吸放氢循环稳定性得以改善,初始吸氢平衡时间t0.9由48 s降低至12 s,经7次吸放氢循环后,稳定吸氢容量由0.409%升高至0.598%(质量分数),吸氢容量衰减率由79%降低至55%,但合金初始吸氢容量有所下降;这主要归因于YFe_3相较之于YFe_2相结构更加稳定,但其吸氢容量更低;当x=0.50时,合金的吸氢容量及吸放氢循环稳定性均同步下降,此时合金中的YFe2相增多,合金吸氢后歧化反应加剧。因此,在Y_(1-x)Ce_xFe_2中,Ce对Y的替代量以小于0.50为宜。  相似文献   

3.
《稀土》2016,(2)
以实验室熔炼制备的La_(0.88)Mg_(0.12)Ni_(3.45)合金和商用AB5型合金为研究对象,利用形貌、物相、粒度和腐蚀电化学分析手段对比研究了两种合金在气固相和电化学吸放氢循环过程中的结构稳定性、粉化和腐蚀行为特征。结果表明,经过100次的气固相吸放氢试验,La_(0.88)Mg_(0.12)Ni_(3.45)合金中除LaNi_5相以外,其他相均发生了吸氢非晶化。氢致非晶化导致合金可逆吸放氢容量显著降低,并使合金吸氢初段的平台严重倾斜。La_(0.88)Mg_(0.12)Ni_(3.45)合金循环后的粉化较轻,但合金中细小的(LaMg)Ni_2相吸氢后较易剥落,导致部分小颗粒粒度频率的增加。商用AB_5型合金循环后粒度降低更明显,但其粉化过程更为均匀。La_(0.88)Mg_(0.12)Ni_(3.45)合金有更大的腐蚀热力学和动力学倾向,因此电化学循环后腐蚀更加严重。氢致非晶化和腐蚀是La_(0.88)Mg_(0.12)Ni_(3.45)合金失效的主要原因。  相似文献   

4.
为了探究La0.62Y0.2Mg0.18Ni3.30Al0.20合金具有良好气态吸放氢性能的适宜退火温度,采用XRD、OM分析了铸态及退火合金的相结构及金相组织,用SEM观察了吸放氢前后合金颗粒的表面形貌,用压力-组成-温度(PCT)仪测试了合金的PCT特性以及吸放氢动力学性能。结果表明,900℃退火合金含有LaNi5和(La,Y,Mg)2(Ni,Al)7主相以及Ni3Y残余相。随着退火温度升高,主相不变,但Ni3Y转变成Y2Ni7相;主相晶胞体积先增大后减小,在41~43°衍射角度内,半高宽先减小后增大。与铸态及其他温度退火合金相比,950℃退火合金的组织均匀性较好,吸放氢量、平均吸放氢速率较高,吸放氢的氢压和滞后系数较小。综合比较,实验范围内,合金的适宜退火温度为950℃。  相似文献   

5.
采用真空感应熔炼技术制备了La_(2-x)Sm_xMg_(16)Ni(x=0,0.1,0.2,0.3,0.4)储氢合金。用X射线衍射(XRD)研究了合金吸放氢前后的相结构,用Sievert测试了合金吸放氢动力学曲线,采用Arrhenius法估算了合金吸放氢的活化能。结果表明,铸态合金的主相是La_2Mg_(17),并存在少量的第二相SmNi和Sm_5Mg_(41)。合金吸氢后形成了氢化物LaH_3和MgH_2。合金的吸氢量、吸放氢动力学随Sm替代量的增加而增加,当Sm替代量从x=0增加到x=0.4时,最大吸氢量从4.458%(质量分数,下同)增加到4.925%。在3 MPa,498 K下,10 min的吸氢量分别为:4.308%,4.342%,4.488%,4.564%,4.787%;在真空、498 K下,20 min的放氢量分别为1.684%,1.521%,1.779%,1.666%,2.131%。Sm替代对合金吸放氢动力学性能的改善主要归因于Sm使合金的活化能降低。随着合金中Sm替代量的增加,合金生成焓ΔH的绝对值及吸氢平台压先减小后增加。制备合金中,La_(1.7_Sm_(0.3)Mg_(16)Ni合金的生成焓ΔH的绝对值最小,为-53.07 k J·mol-1。  相似文献   

6.
金属钒对镁基合金储氢性能的影响   总被引:1,自引:1,他引:0  
镁及镁基储氢合金具有储氢容量高、成本低及污染小等优点,被认为是用于车载储氢方面较有前途的材料。然而镁基合金存在吸放氢温度较高,吸放氢速度较慢的缺点,抑制了它的实际应用。研究表明,制备多元镁基合金可明显改善合金的储氢性能。采用氢化燃烧合成(Hydriding Combustion Synthesis-HCS)和机械球磨(Mechanical Milling-MM),即HCS+MM技术复合制备Mg90Ni10-xVx(x=0,2,4,6,8)合金。采用X射线衍射仪、扫描电镜及气体反应控制器研究了HCS+MM产物的相组成、表面形貌以及吸放氢性能。XRD分析表明,不同合金均含有MgH2,Mg2NiH4,Mg2NiH0.3,Mg以及VHy相,随着V含量的增加,VHy的相含量逐渐增加,而Mg2Ni氢化物含量逐渐减少。SEM结果表明,Mg90Ni4V6和Mg90Ni2V8合金的颗粒平均尺寸较小且分布比较均匀。Mg-Ni-V合金的吸氢性能优于二元Mg-Ni合金,Mg90Ni4V6的吸氢性能最好,在373 K,合金的吸氢量达到5.25%,且在50 s内就基本达到饱和吸氢量。V可以细化晶粒,使合金内部晶界增多,有利于氢的扩散;并且当合金中的V与Mg2Ni达到一定比例时,对合金的吸氢具有协同催化作用,改善了合金的吸氢性能。Mg-Ni-V合金的放氢性能不如二元Mg-Ni合金,说明在放氢过程中Mg2Ni的催化作用优于V。  相似文献   

7.
研究了球磨添加CeO2对La2Mg17-50%(质量分数,下同)Ni复合合金的相结构和储氢性能的影响,并对合金的形貌和吸放氢性能进行了检测。XRD结果表明,球磨加入CeO2后,在La2Mg17-50%Ni合金中除了Mg2Ni和Ni相外,产生Ce Mg12相。SEM形貌图清晰地看见CeO2附在La2Mg17-50%Ni合金表面上呈白色小颗粒。吸氢动力学性能表明,加入CeO2后,使La2Mg17-50%Ni合金的最大吸氢量从3.298%增加到3.594%。添加CeO2后合金的最佳饱和吸氢温度降为200℃(3 MPa),且吸氢动力学性能提高至1 min内的吸氢量达到3.382%,是其最大吸氢量的94%。然而,CeO2在放氢过程中的积极作用并不明显。  相似文献   

8.
为了改善Mg2Ni型合金气态及电化学贮氢动力学性能,用La部分替代合金中的Mg,用快淬技术制备了Mg2-xLaxNi(x=0,0.2,0.4,0.6)合金,用XRD,SEM,HRTEM分析了铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试了合金的气态贮氢动力学性能,用程控电池测试仪测试了合金的电化学贮氢动力学.结果发现,快淬无La合金具有典型的纳米晶结构,而快淬含La合金显示了以非晶相为主的结构,表明La替代Mg提高Mg2Ni型合金的非晶形成能力.La替代Mg明显地改变Mg2Ni型合金的相组成.当La替代量x=0.4时,合金的主相改变为(La,Mg) Ni3+ LaMg3.合金的气态及电化学吸放氢动力学对La含量及快淬工艺敏感,La替代使合金的吸氢动力学降低,但适量的La替代可以明显改善合金的放氢动力学及高倍率放电能力.适当的快淬处理可以提高合金的气态及电化学贮氢动力学,但获得最佳贮氢动力学的快淬工艺与合金的成分密切相关.  相似文献   

9.
用真空电弧熔炼制备AB2型Sc0.8Zr0.1Y0.1Mn2-xNix(x=0~2.0)储氢合金,利用X射线衍射(XRD)和扫描电镜/能谱分析(SEM/EDS)研究了吸氢前后Ni元素替代Mn对Sc Mn2基合金微观结构的影响,用Sievert装置和热重-差热分析仪(TG/DSC)测试了合金的压力-组成-温度(P-C-T)曲线和吸放氢动力学。研究结果表明,合金铸态组织主要由Laves主相和少量Sc Ni及富Y的第二相组成,其中稀土Sc和Y元素易与Ni形成相应的金属间化合物相。随Ni含量x的增加,合金基体的Laves相组织结构由C14型向C15型转变,x=0时,合金组织基本为C14型Laves相单相组织,x=2.0时,合金组织则完全转变为C15型Laves相单相组织。Ni元素替代Mn对合金的气态吸放氢动力学行为和吸氢P-CT曲线影响较大。随Ni含量的增加,合金吸氢动力学与活化性能逐渐变慢,但其放氢温度明显降低,氢化物生成焓减小(-35.05~-18.72k J·mol-1),储氢平台压升高,储氢容量降低;室温时合金最大储氢量达2.18%(质量分数),储氢后其晶格膨胀率ΔV/V为10.63%~27.32%,吸氢前后合金主相仍保持C14型或C15型相结构,并未发生新的氢致相变,亦无氢致非晶化现象。  相似文献   

10.
为了改善稀土系A_2B_7型贮氢合金的电化学贮氢性能,采用粉末冶金方法制备的La_(0.75)Mg_(0.25)Ni_(3.5-x)Mn_x(x=0,0.1,0.2,0.3,0.4)贮氢合金,研究少量Mn替代Ni对合金相结构和电化学性能的影响。结果表明:合金由La Ni5、La2Ni7两相组成,随着Mn含量的增加,两相晶胞逐渐膨胀。Mn的加入能显著改善合金的电化学性能,然而过高的Mn含量会对合金的放电性能带来不利影响。其中La_(0.75)Mg_(0.25)Ni_(3.2)Mn_(0.3)合金电极的最大放电容量为362.3m Ah/g,经过100次循环后容量保持率为69.5%。此外,合金电极的高倍率放电性能、线性极化曲线以及电化学交流阻抗谱的测试均表明合金的电化学动力学性能随着Mn含量的增加先增大而后减小。  相似文献   

11.
介绍了快速固化的镁基Mg—Ni—RE(RE=Y,Mm)合金内的氢气存储。指出快速固化即淬火状态的合金可通过将非晶态相或者由平均粒径为3nm的纳米晶体组成的纳米/非晶态相埋置在大量的非晶态相中而获得,并将Mg76Ni19Y55和Mg78Ni18Y4两种合金的氢化性能(储氢能力和氢化动力学)与Mg75Ni20Mm5(Mm为Ce和富La的混合稀土)的氢化性能做了对比。  相似文献   

12.
为了研究钛对Mg_2Ni贮氢材料性能的影响,在Mg_2Ni合金中添加不同含量的合金元素钛,并进行了显微组织、吸放氢性能和循环稳定性的测试与分析。结果表明:钛的添加有利于细化晶粒,提高材料的吸放氢性能和循环稳定性。与不添加钛(Mg_2Ni)相比,添加8.233%钛时(Mg_2NiTi_(0.2))的平均晶粒尺寸减小55.63%、最大吸氢量增大47.37%、充放电循环20次后放电容量衰减率减小48.80%、吸氢饱和时间和放氢平台压力基本不变。Mg_2Ni贮氢材料中钛的含量优选为8.233%。  相似文献   

13.
针对镁基储氢合金吸放氢动力学缓慢的问题,构建 Mg-Y-Ni储氢合金体系,预通过 Y元素和 Ni元素引入催化基团,以获得改善其动力学性能的途径。通过真空感应熔炼制备了 Mg95-xY5Nix(x=5,10,15)合金,并采用 X射线衍射(XRD)对其不同状态下的相组成进行分析,并采用扫描电镜(SEM)和透射电镜(TEM)分析合金微观结构和晶体状态。同时,采用 Sievert 等体积方法测试了试样在不同温度下的等温吸放氢动力学性能。结果表明,氢化后的试样是由 MgH2,Mg2NiH4和 YH3相组成的纳米晶结构,然而在放氢后,仅有 MgH2和 Mg2NiH4相发生分解反应,生成相应的 Mg 和 Mg2Ni相并放出氢气。原位生成的 YH3相没有发生分解,并弥散分布在母合金中,且扮演积极的催化效应。此外,随着Ni含量的增加,合金吸放...  相似文献   

14.
采用元素替代的方法,研究了Sn元素部分替代Ni元素对La0.72Nd0.08Mg0.2Ni3.4-xSnxAl0.1(x=0~0.14)电极合金结构和电化学性能的影响。通过感应熔炼、退火处理、粉碎过筛后得到合金样品。X射线衍射(XRD)分析表明该合金为多相结构,包括(La,Mg)2Ni7(Gd2Co7型和Ce2Ni7型)、(La,Mg)5Ni19(Pr5Co19型)、(La,Mg)Ni3(Pu Ni3型)和La Ni5相(Ca Cu5型)。结构精修显示合金主相由Gd2Co7型(La,Mg)2Ni7相依次变化为(La,Mg)5Ni19,La Ni5相。恒电流充放电测试表明,合金放电容量最大值为387.4 m Ah·g-1。加入Sn后合金电极的放电容量下降,这与合金中相含量的变化是有关系的。Sn的加入导致合金中高吸氢相(La,Mg)2Ni7相的减少,而吸氢能力相对小的(La,Mg)5Ni19相和La Ni5相含量不断增加。高倍率放电测试表明随着Sn元素加入,高倍率放电性能下降。电化学循环稳定性测试表明随着Sn元素含量的增加,合金电极循环寿命先增加后下降。当Sn含量x=0.06时,在100次电化学循环后放电容量保持率达到最高水平83.8%。  相似文献   

15.
中频感应熔炼法制备了La0.55Pr0.05NdxMg0.4-xNi3.3Al0.1(x=0.10、0.15、0.20)储氢合金.通过X射线衍射(XRD)和Rietveld方法分析了每个合金的相结构,分析结果表明,由于Nd/Mg比不同,三个合金的相组成不完全相同.同时应用扫描电镜(SEM)察了合金的形貌并结合能谱(EDS)方法测定了各相的组成,测定结果与XRD分析结果有所不同.La0.55Pr0.05NdxMg0.4-xNi3.3Al0.1(x=0.10、0.15、0.20)合金在313 K第一次吸放氢的P-C-T曲线显示出两个平台压力,分别对应于(La,Mg)2(Ni,Al)7相和La(Ni,Al)5相.合金的储氢容量随X值的增大先增加后减小,这种变化规律可能与合金中储氢相的丰度以及晶胞体积有关.该系列合金的吸/放氢动力学曲线表明,Nd含量适中的合金的吸/放氢动力学性能相对较好.  相似文献   

16.
《稀土》2016,(5)
首先采用二步熔炼法制备了铸态Mm(NiCoMnAl)_5-Mg_2Ni复合储氢合金,然后在不同快淬速度下对铸态Mm(NiCoMnAl)_5-Mg_2Ni复合合金进行快淬处理,获得一系列不同快淬速度的快淬态Mm(NiCoMnAl)_5-Mg_2Ni复合储氢合金。利用X射线衍射(XRD)、扫描电镜及能谱分析(SEM/EDS)和电化学测试方法研究了所有合金的微结构和电化学性能。微结构分析表明,铸态Mm(NiCoMnAl)_5-Mg_2Ni复合合金由LaNi_5和少量的Mg_2Ni相组成。而铸态复合合金经快淬处理后,合金中少量的Mg_2Ni相消失,同时有LaNi_3和极少量的La2Ni3新相形成。快淬态合金中的Mg元素主要以固溶形式优先存在于富稀土LaNi_3相中,形成(La,Mg)Ni_3相。电化学分析表明,恰当的快淬处理能使Mm(NiCoMnAl)_5-Mg_2Ni复合合金的活化性能、最大放电容量、放电特性和循环稳定性得到改善。但快淬速度太大,上述性能均有变坏趋势。当快淬速度为15 m·s-1时,Mm(NiCoMnAl)_5-Mg_2Ni复合合金具有最大的放电容量,此时合金的最大放电容量为303.5 m Ah·g~(-1),比铸态合金的最大放电容量增大了3.3%;快淬速度为20 m·s~(-1)时,复合合金的循环稳定性最佳,80次循环后的容量保持率为98.3%,比铸态合金的容量保持率增大了11.9%。  相似文献   

17.
采用高频感应熔炼法制备了A_2B_7型LaY_2Ni_(10.5-x)(MnAl)_x, LaY_2Ni_(10.5-0.8x)Mn_(0.5x)Al_(0.3x), LaY_2Ni_(10.5-0.6x)Mn_(0.5x)Al_(0.1x)(x=2.0, 1.5, 1.0)储氢合金,在Ar气氛和925℃下对铸态合金进行退火处理,通过X射线衍射(XRD)和电化学测试等分析方法系统研究了Mn, Al部分替代Ni元素对合金相结构和电化学性能的影响。研究结果表明:合金由Ce_2Ni_7相、 Gd_2Co_7相、 LaNi_5相、 PuNi_3相和Ce_5Co_(19)相组成,随着Mn, Al替代量的降低,合金中的Gd_2Co_7相含量减少至消失, Ce_2Ni_7相含量增加,各相晶胞体积减小。电化学P-C-T曲线显示不同吸氢态造成的双平台现象,随着Mn, Al替代量的降低,合金吸放氢坪台压升高,平台区域变宽。电化学性能测试表明,随着Mn, Al替代量的减少,合金的最大放电容量,倍率性能和循环性能明显提高。合金高倍率性能的提升主要与合金中Gd_2Co_7相含量降低和Ce_2Ni_7相的增加有关。  相似文献   

18.
采用不同球磨时间(10,20,30,40 h)制备了Mg_(22)Y_2Ni_(10)Cu_2+x%Ni(x=0,50,100,150;质量分数)复合材料,并对材料的结构、形貌、电化学及动力学储氢性能进行了系统的研究。分析了球磨时间和镍添加量对Mg_(22)Y_2Ni_(10)Cu_2合金储氢性能的影响。结果表明,球磨可以改善合金的显微结构,促进合金中非晶、纳米晶的形成,而镍的加入显著促进了该过程的进行,使复合材料中非晶、纳米晶的含量大幅度升高;随球磨时间和镍复合量的增加,合金放电比容量显著增加,当复合镍为x=100、球磨时间为40 h时,其值已达到最大的669.7 mAh·g~(-1)。循环稳定性的改善也较为明显,复合镍x=150、球磨20 h试样的S_(20)已经达到了80%。此外,球磨和镍的添加还可以明显优化合金的高倍率放电、交流阻抗和动电位极化等动力学性能。此外,包覆于合金表面的镍不但对合金性能起到催化作用,提高了合金的表面活性,还有效地提高了合金的综合储氢性能。  相似文献   

19.
为了研究退火时间对LaMgNi_(3.9)Mn_(0.2)合金的结构和气态吸放氢性能的影响,采用XRD和SEM手段测试了合金的物相和微观结构,半自动Siever′s法测试了合金的吸放氢动力学曲线。实验结果表明,随着退火时间增加,合金中LaMg(NiMn)_4主相含量降低,(La,Mg)(NiMn)_5相含量增加。铸态及退火合金表面均由不同尺寸的柱状晶组成,具有明显的组织遗传效应;随着退火时间增加,合金柱状晶区域中La、Mg、Ni的含量差值都降低,元素分布更均匀,15 h与20 h退火合金的柱状晶晶间区域中Mn元素消失。铸态和退火合金第一次吸氢后达到相应的最大吸氢量,故退火时间对合金的活化性能无影响,但对合金的最大吸氢量、饱和吸放氢量具有明显影响。随着退火时间增加,合金的最大吸氢量、饱和吸放氢量降低,但合金的吸放氢饱和率先增加后降低,15 h退火合金的吸放氢饱和率相对较高。  相似文献   

20.
采用热分析以及合金平衡组织结构分析,对Mg-Zn-Y系Mg_(91.4)Zn_(7.2)Y_(1.4)合金中的相变及其相关相平衡进行了研究.结果表明,Mg_(91.4)Zn_(7.2)Y_(1.4)合金在440℃时处于α-Mg固溶体和准晶I的两相平衡;450℃时处于α-Mg固溶体、液相Liq和三元化合物W的三相平衡.Mg_(91.4)Zn_(7.2)Y_(1.4)合金在446.8℃时发生了I+α-Mg→Liq+W四相包共晶转变.温度超过477.3℃,Mg_(91.4)Zn_(7.2)Y_(1.4)合金中W相不再稳态存在,500℃时合金处于α-Mg和液相两相平衡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号