首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of analysis methods is proposed to simulate the liquid–gas two-phase and multi-component transport phenomena in the gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC). These methods involve measuring and predicting the two-phase flow properties of a GDL, and simulating the two-phase multi-component transport in the GDL. The capillary pressure is measured by the porous diaphragm method and predicted by the pore network model. The relative permeability is measured by the steady-state method and predicted by a combination of the single-phase and the two-phase lattice Boltzmann method. And the simulation of the liquid–gas two-phase transport is done using the multi-phase mixture model. The methods are applied to a carbon-fiber paper GDL to identify the two-phase multi-component transport in the GDL.  相似文献   

2.
吴伟  陈旺  蒋方明 《新能源进展》2016,4(5):351-357
为了提高质子交换膜燃料电池(PEMFC)水管理,本文借助多相流格子Boltzmann模型(LBM)模拟分析了PEMFC碳纸气体扩散层(GDL)内的气液两相输运过程,主要研究了GDL疏水性对气液两相流的影响。结果表明:液态水流路径不仅受到GDL结构形态的影响,而且受到材料疏水性影响。液态水在疏水性弱的GDL中不仅容易沁入,而且容易在孔隙中达到饱和;相反,在疏水性较强的GDL中,液态水很难突破沁入小尺寸孔隙,而从孔径较大的孔隙流通,从而形成毛细力主导的指进流动。  相似文献   

3.
Proton exchange membrane (PEM) fuel cells are a promising candidate as the next-generation power sources for portable, transportation, and stationary applications. Gas diffusion layers (GDL) coated with microporous layers (MPL) are a vital component of PEM fuel cells, providing multiple functions of mechanical support, reactant transport, liquid water removal, waste heat removal, and electron conductance. In this review, we explain several most important aspects in the research and development (R&D) of this fuel cell component, including material characterization, liquid water detection/quantitation, structure reconstruction, fundamental modeling, transport properties, and durability. Specially, the commonly used microstructure reconstruction methods for GDLs are presented and discussed. Visualization techniques for liquid water detection in the GDL and MPL microstructures are described. Major modeling approaches, such as the multiphase mixture (M2) formulation, pore networks model (PNM), lattice Boltzmann method (LBM) and volume of fluid (VOF) approach, are reviewed and explained. Important material properties and parameters that greatly influence two-phase flow and fuel cell performance, and GDL-related material degradation issues are discussed and summarized to further advance on the GDL material design and development.  相似文献   

4.
The effect of wettability on water transport dynamics in gas diffusion layer (GDL) is investigated by simulating water invasion in an initially gas-filled GDL using the multiphase free-energy lattice Boltzmann method (LBM). The results show that wettability plays a significant role on water saturation distribution in two-phase flow in the uniform wetting GDL. For highly hydrophobicity, the water transport falls in the regime of capillary fingering, while for neutral wettability, water transport exhibits the characteristic of stable displacement, although both processes are capillary force dominated flow with same capillary numbers. In addition, the introduction of hydrophilic paths in the GDL leads the water to flow through the hydrophilic pores preferentially. The resulting water saturation distributions show that the saturation in the GDL has little change after water breaks through the GDL, and further confirm that the selective introduction of hydrophilic passages in the GDL would facilitate the removal of liquid water more effectively, thus alleviating the flooding in catalyst layer (CL) and GDL. The LBM approach presented in this study provides an effective tool to investigate water transport phenomenon in the GDL at pore-scale level with wettability distribution taken into consideration.  相似文献   

5.
We studied the interaction of a water droplet with a solid wall on a hydrophobic gas diffusion layer (GDL). Of particular interest is the stability of the droplet as a function of plate wetting properties and the potential for liquid entrapment in the GDL/land contact area. Such transport is of relevance to breakthrough dynamics and convective liquid droplet transport in polymer electrolyte membrane (PEM) fuel cell cathode gas channels. While a variety of complex coupled transport phenomena are present in the PEM fuel cell gas channel, we utilize a very simplified experimental model of the system where a droplet originally placed on a hydrophobic GDL is translated quasistatically across the GDL surface by a solid surface. Transport and entrapment are imaged using fluorescence microscopy. This work provides new insights into droplet behaviour at the GDL/land interface in a PEM fuel cell and suggests that hydrophobic land areas are preferable for mitigating the accumulation of liquid water under the land area of the gas flow channels.  相似文献   

6.
The transport of liquid water through an idealized 2-D reconstructed gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell is computed subject to hydrophobic boundary condition at the fibre–fluid interface. The effect of air flow, as would occur in parallel/serpentine/interdigitated type of flow fields, on the liquid water transport through the GDL, ejection into the channel in the form of water droplets and subsequent removal of the droplets has been simulated. Results show that typically water flow through the fibrous GDL occurs through a fingering and channelling type of mechanism. The presence of cross-flow of air has an effect both on the path created within the GDL and on the ejection of water into the channel in the form of droplets. A faster rate of liquid water evacuation through the GDL (i.e., more frequent ejection of water droplets) as well as less flooding of the void space results from the presence of cross-flow. These results agree qualitatively with experimental observations reported in the literature.  相似文献   

7.
Using the multiphase lattice Boltzmann method (LBM), the liquid water transport dynamics is simulated in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells (PEMFCs). The effect of rib structure on the water invasion process in the micro-porous GDL is explored by comparing the two cases, i.e., with rib and without rib structures. The liquid water distribution and water saturation profile are presented to determine the wetting mechanism in the GDL. The results show that the liquid water transport in the GDL is strongly governed by capillary force and the rib structure plays a significant role on water distribution and water transport behavior in the GDL. Comparison of two cases confirms that the rib structure influences on the location of water breakthrough. The liquid water distribution and water saturation profile indicate that the high resistance force underneath the rib suppresses the growth of water cluster, resulting in the change of flow path. After water breakthrough, the liquid water distribution under the channel has little variation, whereas that under the rib continues to change. The predicted value of effective permeability is in good agreement with Carman-Kozeny correlation and experimental results in the literature. The results suggest that the LBM approach is an effective tool to investigate the water transport behavior in the GDL.  相似文献   

8.
Combining with a lattice Boltzmann thermal model, a lattice Boltzmann multiphase model with a large density ratio can be extended to describe phase change with mass and heat transferring through the interface. Based on the Stefan boundary condition, the phase change is considered as a change of phase order parameter and is disposed as a source term of the Cahn-Hilliard equation. This hybrid model is applied to simulate the motion and growth of a rising vapor bubble through a uniformly superheated liquid. Meanwhile, the parametric effect on the bubble growth, deformation and rising in the different surface tension forces and kinetic viscosities are also presented.  相似文献   

9.
Using the multiphase free-energy lattice Boltzmann method (LBM), the formation of a water droplet emerging through a micro-pore on the hydrophobic gas diffusion layer (GDL) surface in a proton exchange membrane fuel cell (PEMFC) and its subsequent movement on the GDL surface under the action of gas shear are simulated. The dynamic behavior of the water droplet emergence, growth, detachment and movement in the gas flow channel is presented. The size of the detached droplet and the time of the droplet removing out of the channel under the influence of gas flow velocity and GDL surface wettability are investigated. The results show that water droplet removal is facilitated by a high gas flow velocity on a more hydrophobic GDL surface. A highly hydrophobic surface is shown to be capable of lifting the water droplet from the GDL surface, resulting in more GDL surface available for gas reactant transport. Furthermore, an analytical model based on force balance is presented to predict the droplet detachment size, and the predicted results are in good agreement with the simulation results. It is shown that the LBM approach is an effective tool to investigate water transport phenomena in the gas flow channel of PEMFCs with surface wettability taken into consideration.  相似文献   

10.
Pore-scale simulations of two phase flows in a packed-sphere bed and in a carbon paper gas diffusion layer (GDL) are carried out using the free energy multiphase lattice Boltzmann method (LBM). The simulations are performed based on the detailed microstructure of the porous media under periodic boundary conditions such that the average phase saturations in the porous medium remain constant. A comparison of the simulated and measured relative permeabilities for the packed sphere bed as a function of non-wetting phase saturation is performed, and effects of the wettability and the anisotropic characteristics of relative permeabilities of the GDL are investigated.  相似文献   

11.
Liquid water transport is one of the key challenges for water management in a proton exchange membrane (PEM) fuel cell. Investigation of the air–water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents numerical investigations of air–water flow across an innovative GDL with catalyst layer and serpentine channel on PEM fuel cell cathode by use of a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different static contact angles (hydrophilic or hydrophobic) were applied to the electrode (GDL and catalyst layer). The results showed that different wettabilities of cathode electrode could affect liquid water flow patterns significantly, thus influencing on the performance of PEM fuel cells. The detailed flow patterns of liquid water were shown, several gas flow problems were observed, and some useful suggestions were given through investigating the flow patterns.  相似文献   

12.
Numerical simulations using the lattice Boltzmann method (LBM) are developed to elucidate the dynamic behavior of condensed water and gas flow in a polymer electrolyte membrane (PEM) fuel cell. Here, the calculation process of the LBM simulation is improved to extend the simulation to a porous medium like a gas diffusion layer (GDL), and a stable and reliable simulation of two-phase flow with large density differences in the porous medium is established. It is shown that dynamic capillary fingering can be simulated at low migration speeds of liquid water in a modified GDL, and the LBM simulation reported here, which considers the actual physical properties of the system, has significant advantages in evaluating phenomena affected by the interaction between liquid water and air flows. Two-phase flows with the interaction of the phases in the two-dimensional simulations are demonstrated. The simulation of water behavior in a gas flow channel with air flow and a simplified GDL shows that the wettability of the channel has a strong effect on the two-phase flow. The simulation of the porous separator also indicates the possibility of controlling two-phase distribution for better oxygen supply to the catalyst layer by gradient wettability design of the porous separator.  相似文献   

13.
Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell constitutes a significant portion of the overall fuel cell electrical resistance under the normal operation conditions. Most current methods for contact resistance estimation are experimental and there is a lack of well developed theoretical methods. A micro-scale numerical model is developed to predict the electrical contact resistance between BPP and GDL by simulating the BPP surface topology and GDL structure and numerically determining the status for each contact spot. The total resistance and pressure are obtained by considering all contact spots as resistances in parallel and summing the results together. This model shows good agreements with experimental results. Influences of BPP surface roughness parameters on contact resistance are also studied. This model is beneficial in understanding the contact behavior between BPP and GDL and can be integrated with other fuel cell simulations to predict the overall performance of PEM fuel cells.  相似文献   

14.
The multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) with multi-reflection solid boundary conditions is used to study anisotropic permeabilities of a carbon paper gas diffusion layer (GDL) in a fuel cell. The carbon paper is reconstructed using the stochastic method, in which various porosities and microstructures are achieved to simulate different samples. The simulated permeability and tortuosity show anisotropic characteristics of the reconstructed carbon papers with in-plane permeability higher than through-plane, and in-plane tortuosity lower than through-plane. The calculated permeabilities are in good agreement with existing measurements. The relationship between the permeability and the porosity is fitted with empirical relations and some fitting constants are determined. Furthermore, the obtained relationship of tortuosity and porosity is used in a fractal model for permeabilities. The results indicate that the fractal model and the Kozeny–Carman equation provide similar predictions on the through-plane permeability of the carbon paper GDL.  相似文献   

15.
A numerical model for a PEM fuel cell has been developed and used to investigate the effect of some of the key parameters of the porous layers of the fuel cell (GDL and MPL) on its performance. The model is comprehensive as it is three-dimensional, multiphase and non-isothermal and it has been well-validated with the experimental data of a 5 cm2 active area-fuel cell with/without MPLs. As a result of the reduced mass transport resistance of the gaseous and liquid flow, a better performance was achieved when he GDL thickness was decreased. For the same reason, the fuel cell was shown to be significantly improved with increasing the GDL porosity by a factor of 2 and the consumption of oxygen doubled when increasing the porosity from 0.40 to 0.78. Compared to the conventional constant-porosity GDL, the graded-porosity (gradually decreasing from the flow channel to the catalyst layer) GDL was found to enhance the fuel cell performance and this is due to the better liquid water rejection. The incorporation of a realistic value for the contact resistance between the GDL and the bipolar plate slightly decreases the performance of the fuel cell. Also the results show that the addition of the MPL to the GDL is crucially important as it assists in the humidifying of the electrolyte membrane, thus improving the overall performance of the fuel cell. Finally, realistically increasing the MPL contact angle has led to a positive influence on the fuel cell performance.  相似文献   

16.
In this work, side view images of liquid–gas–solid interfaces are observed during the evaporation of liquid water droplets on various commercially available untreated gas diffusion layers (GDLs). The change in contact diameter as a function of evaporative volume loss is measured to quantify the unpinning rates of micro-sized droplets. This contact diameter pinning behaviour during evaporation is correlated to the material topography, which is quantified through profilometry measurements. The carbon fibre paper with the smallest average roughness (15 μm) exhibits the strongest degree of pinning (unpinning at a rate of 0.13 mm/μL). Higher average surface roughnesses for felt (30 μm) and cloth yarn (32 μm) result in higher unpinning rates, 0.21 mm/μL and 0.19 mm/μL, respectively. These results indicate that common GDL materials exhibit Cassie–Baxter wetting behaviour, and reduced GDL roughness promotes droplet pinning. The material-specific droplet contact diameter progression should be considered during GDL selection for polymer electrolyte membrane (PEM) fuel cells. This work provides insight into the effect of GDL material properties on gas channel water management, as water droplets are expected to experience similar pinning to that observed in this work within the cathode gas channels of a PEM fuel cell.  相似文献   

17.
The present study applied Lattice Boltzmann method (LBM) for examining the transport of liquid water in a GDL carbonic paper of polymer electrolyte membrane (PEM) fuel cells. The stochastic method is used for GDL carbonic paper reconstruction. In order to study the behavior of liquid water, different simulations are carried out on the reconstructed GDL. While removing from the GDL of a PEM fuel cell, the dynamics of liquid water is simulated by LBM in this study. The effects that the wettability of GDL imposes on the removal process and liquid water distribution are investigated. In addition, the dynamic behaviors and the saturation process of the liquid water in GDL in a steady state and a transient mode are also explored. The effects of surface wettability on the effective clusters in GDL, merging of different clusters and the loops developed by the fingers are investigated. Moreover, the effects of mixed wettability on the liquid water dynamic behavior and liquid water saturation within the GDL are studied in detail. The results show that the best location for insertion of the hydrophilic layer inside the GDL is near the GDL-GC interface. In this case, the time required for liquid water to reach the GDL/GC interface is reduced about 17% than purely hydrophobic GDL. A decrease of 18.7% in the steady-state saturation level is also observed by insertion of hydrophilic layer; therefore, use of hydrophilic layer near GDL-GC interface is more effective than increasing the contact angle of GDL-fibers. Different validation studies are also reported to show the accuracy of the model.  相似文献   

18.
The mass transport characteristics of a gas diffusion layer (GDL) predominantly affect the performance of a proton exchange membrane (PEM) fuel cell. However, studies examining the transient response related to the GDL are insufficient, although the dynamic behavior of a PEM fuel cell is an important issue. In this study, the effects of the design of a micro porous layer (MPL) on the transient response of a PEM fuel cell are investigated. The MPL slurry density and multiple functional layers are treated as the variable design parameter. The results show that the transient response is determined by the capillary pressure gradient through the GDL. The trade-off relation for the PEM fuel cell performance under low and high humidity conditions due to the hydrophobic GDL is mitigated by designing a reverse capillary pressure gradient in the MPL.  相似文献   

19.
Water management in a PEM fuel cell significantly affects the fuel cell performance and durability. The gas diffusion layer (GDL) of a PEM fuel cell plays a critical role in the water management process. In this short communication, we report a simple method to measure the water transport rate across the GDL. Water rejection rates across a GDL at different cathode air-flow rates were measured. Based on the measurement results, the fuel cell operating conditions, such as current density, temperature, air stoichiometry and relative humidity, corresponding to membrane drying and flooding conditions were identified for the particular GDL used. This method can help researchers develop GDLs for a particular fuel cell design with specific operating conditions and optimize the operation conditions for the given PEM fuel cell components.  相似文献   

20.
A complete three-dimensional and single phase CFD model for a different geometry of proton exchange membrane (PEM) fuel cell is used to investigate the effect of using different connections between bipolar plate and gas diffusion layer on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components.This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the three-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that by increasing the number of connection between GDL and bipolar plate the performance of the fuel cell enhances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号