首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational model of flashover is presented that closely follows the experimental setup at CNRS-ENSMA-Poitiers. A propane burner with thermal power of 55 kW is used as a primary source of fire and square beech wood samples (30 mm×30 mm×5 mm) as fire spread targets. The computational model describes the wood pyrolysis with a progress variable. Using the conservation of heat fluxes at the solid–gas interface, the thermal diffusion in the wood samples is coupled with the convective and the radiative heat transfer in the ambient gas phase. The incoming heat flux at the upper surface of the wood samples reaches values between 20 and 30 kW/m2. With the ignition and subsequent combustion of the pyrolysis volatiles, the heat flux increases by approx. 12 kW/m2. The results show that the ignition of the wood samples is triggered at an approx. surface temperature of 650 K. Due to large local variations in incident heat flux, significant differences in the ignition times of the wood samples are observed. The comparison of the calculated and the experimentally measured temperature shows a good agreement for the first wood sample and the model predicts the ignition time very well. But for the second and the third wood samples the model overpredicts the temperature, which leads to a premature ignition of these wood samples.  相似文献   

2.
This paper deals with the thermal degradation of a black poly(methyl)methacrylate (PMMA) in a cone calorimeter (CC) in air with a piloted ignition. The influence of several heat fluxes (11 kW m−2 and 12 kW m−2, and ten values from 15 to 60 kW m−2 in steps of 5 kW m−2) on PMMA sample degradation and the decomposition chemistry has been studied. Thus, thermal properties have been deduced and calculated from ignition time and mass loss rate (MLR) curves. During our experiments, among compounds quantified simultaneously by a Fourier transformed infrared (FTIR) or gas analyzer, five main species (CO2, CO, H2O, NO and O2) have been encountered, regardless of the external heat flux considered. The main product concentrations allow calculation of the corresponding emission yields. Thus, mass balances of C and H atoms contained in these exhaust gases were able to be compared with those included in the initial PMMA sample. Using the standard oxygen consumption method, heat release rate (HRR), total heat release (THR) and effective heat of combustion (EHC) have been calculated for each irradiance level. Therefore, these different results (thermal properties, emission yields, HRR, THR and EHC) are in quite good accordance (same order of magnitude) with those found in previous studies.  相似文献   

3.
In this study, the effect of carbon nanotubes (CNTs) on nucleate boiling heat transfer is investigated. Two halocarbon refrigerants of R123 and R134a for building chillers were used as working fluids and 1.0 vol.% of CNTs was added to them to examine the heat transfer enhancement with CNTs. The experimental apparatus was composed of a stainless steel vessel and a 152.0 mm long plain horizontal tube of 19.0 mm outside diameter heated by a cartridge heater. All data were obtained at the pool temperature of 7 °C in the heat flux range of 10–80 kW m−2. Test results showed that CNTs increase nucleate boiling heat transfer coefficients for these refrigerants. Especially, large enhancement up to 36.6% was observed at low heat fluxes of less than 30 kW m−2. With increasing heat flux, however, the enhancement was suppressed due to vigorous bubble generation. Fouling on the heat transfer surface was not observed during the course of this study. Optimum dispersion of CNTs should be examined for their commercial application to enhance nucleate boiling heat transfer in building air-conditioning applications.  相似文献   

4.
This paper studies the release of the principal gas species produced during the combustion of a non-flame-retarded Polyether Polyurethane Foam (PPUF) of density of 20.9 kg m−3 in the cone calorimeter. Five irradiance levels are studied: 10, 20, 30, 40 and 50 kW m−2. Heat release rate, mass-loss rate and bulk gas mass flow are measured. The mass flow and yields of gas species are measured as well. The analysis of release of gas species relative to time allowed the study of the different stages of PPUF kinetics and to quantify the gas composition. Of the twenty-two different gas species that were monitored simultaneously, the principal species found were CO2, CO, H2O, NO and total hydrocarbons. According to species release, two decomposition stages for PPUF are identified. In the first stage, the solid structure breaks down carrying the decomposition of isocyanate, and in the second stage the polyol decomposes. These two stages are in agreement with the decomposition mechanism proposed in the literature. However, the data presented here is the first experimental study of burning behavior of PPUF taking into account the release of gas species too. An elemental analysis was performed and the chemical formula of the virgin material was determined. This allows the mass balance of the elements in the virgin foam content with the gaseous product content. The effective heat of combustion and the ratio between heat release rate and CO2 mass flow are calculated at each of the irradiance levels.  相似文献   

5.
To model the impacts of ecoroofs on building envelope heat transfer accurately, thermal property data for ecoroof soils are needed. To address this need we have measured thermal conductivity, specific heat capacity, thermal emissivity, short wave reflectivity (albedo) and density for ecoroof soil samples over a range of moisture states. To represent a wide range of commonly used ecoroof soils we created eight test samples using an aggregate (expanded shale or pumice), sand, and organic matter in varying volumetric composition ratios. The results indicate significant variability in properties as a function both of soil composition and soil wetness. Thermal conductivity ranged from 0.25 to 0.34 W/(m K) for dry samples and 0.31–0.62 W/(m K) for wet samples. Specific heat capacity ranged from 830 to 1123 J/(kg K) for dry samples and 1085–1602 J/(kg K) for wet samples. Albedo was consistently higher for dry samples (0.17–0.40) decreasing substantially (0.04–0.20) as moisture was added. Thermal emissivities were relatively constant at 0.96 ± 0.02 regardless of soil type or moisture status. These results are discussed in the context of their impacts on building energy consumption and the importance of including daily and seasonal property variation within models of the ecoroof energy balance.  相似文献   

6.
An experimental study has been carried out to determine thermophysical properties of tropical wood. Five species, covering a wide range of densities of most of the wood used in Central Africa, has been chosen. These properties which characterise the thermally insulating materials, are related to basal density in order to help predict the thermophysical properties of any tropical wood as soon as its basal density is known. Steady-state and unsteady state methods were used to measure thermal conductivity and thermal diffusivity, respectively. Specific heat and thermal effusivity were then calculated. The influences of moisture content and the principal cutting plan on the thermophysical properties of tropical wood were examined. Higher conductivity, diffusivity and effusivity in the axial direction were observed, as well as the non-directional dependence character of the specific heat. It was also observed that thermal conductivity of tropical wood increases with infradensity both in the axial and the transverse directions. Finally, it was shown that conductivity and effusivity increase and thermal diffusivity decreases with the increase of moisture content.  相似文献   

7.
This study seeks to improve the geometrical distribution of bricks to optimise the equivalent thermal transmittance of a wall built of Termoarcilla® ECO 29 voided clay bricks, using calculations according to Spanish UNE [1], AENOR [10], European EN [6], [7], [8] and [9] and international ISO [11] and [12] standards.The objective is to study improvements in the wall's thermal conductivity, always remembering the limitations imposed by the manufacturing process. Simulations are made using a finite elements application [14].It is concluded that, within the possibilities allowed by the manufacturing process, with non-rectangular voids the heat flux has to cross a higher number of voids, which improves its thermal properties. A rhomboid layout of voids with the longer diagonal at right angles to the heat flux is the best internal void layout. If the internal perforations are also extended to the end of the tongue and groove, the direct thermal bridge in this type of brick is broken.Finally, a 290 mm wide brick with 25 rows is obtained with the geometrical properties described above which shows an improvement of almost 16% over the original ECO 29 brick, performing well in all climatic areas of Spain, with a full-bed mortar joint 30 mm thick.  相似文献   

8.
为了研究火灾(高温)下木材的热响应,将木材热响应过程分为水分蒸发前、水分蒸发后热分解前和热分解后三个阶段。开展了升温速率为5、10、20K/min的泡桐木热重分析(thermogravimetric analysis, TGA)试验,采用Ozawa方法进行分析,得到相应的表观动力学参数。基于并联和串联模型分别建立了表观密度和表观导热系数表达式;基于差示扫描量热实验,考虑蒸发潜热和分解热,提出了表观比热容计算公式,建立了考虑表观热工参数的一维非线性热传导模型,并采用一维隐式有限差分法进行了木材热传导性能的求解,得到了木材的温度、水分蒸发程度、热分解程度、表观密度、比热和导热系数等热响应。开展了泡桐木单面受热试验,对温度场进行了测量。结果表明,基于动力学方法的Arrhenius方程可较好地描述水分蒸发和热分解过程,表观比热容在水分蒸发和热分解过程中明显增大,模型温度计算值和试验值吻合较好,该模型可为火灾(高温)下木结构的热响应研究提供参考。  相似文献   

9.
This paper presents the assessment of coconut fibre thermal characteristics and its use to modulate temperatures in concrete slabs in the construction industry. Fibre is abundantly available in tropical regions, extracted from the husk of coconut fruits and manufactured at 115.54 MPa to obtain specimens. A first thermal conductivity of k = 0.048 (W/m K) is obtained by solving the heat diffusion equation with experimental temperatures as boundary conditions. A second value k = 0.0499 (W/m K) is obtained by solving the Fourier's law by using a known heat flux and temperature histories in the specimen. The maximum error between the first and second k values was 3.8%. However, the k = 0.048 (W/m K) was used for numerical analysis.Experimental work was done to find density and heat capacity, 174 kg/m3 and 2600 J/kg K, respectively. Further numerical work was carried out to modulate temperature in concrete slabs. This showed that fibre put on the concrete external surface allows room temperatures to fall within the comfort range. Density, thermal conductivity and heat capacity of coconut fibre were varied in a wide range to investigate the sensitivity of temperature to such changes. This showed that temperature can be considered sensible only to thermal conductivity variations.  相似文献   

10.
A controlled simulation experiment was performed to assess whether dislodgeable arsenic can be tracked onto carpets via foot traffic from chromated copper arsenate (CCA) pressure-treated decks. The pilot simulation study demonstrated that it is possible to track arsenic from CCA-decks onto carpets under the test conditions evaluated. A total of nine CCA-decks and two non-CCA-treated control surfaces were tested under wet and dry conditions. Five participants walked in a controlled manner (60 cycles, 11 steps per cycle) across decks and then walked over various lanes of carpet to simulate the tracking of arsenic indoors on the bottoms of shoes under heavy foot traffic conditions. To determine if arsenic was transferred from the CCA-treated wood to the carpet via shoes, laboratory analysis was performed on three different types of samples: (1) wipe samples of dislodgeable arsenic from a 46 cm2 area of carpet, (2) dust samples obtained from vacuuming a 7442 cm2 area of carpet, and (3) extractions of 13 cm2 carpet samples. Wipe samples were also taken directly from the deck lumber. Following digestion and extraction, the amount of arsenic in each sample was measured using Graphite Furnace Atomic Absorption Spectrometry. The mean arsenic concentration measured on the carpets was 2.52 μg/(100 cm2) and 2.05 μg/(100 cm2) with wipes for the dry and wet conditions, respectively, 4.69 μg/(100 cm2) and 0.68 μg/(100 cm2) with vacuumed dust for the dry and wet conditions, respectively, and 15.56 μg/(100 cm2) and 12.31 μg/(100 cm2) with carpet extractions for the dry and wet conditions, respectively. The mean arsenic concentration measured on the decks was 22.2 μg/(100 cm2) with wipes. Further research is needed to determine if indoor exposure to arsenic due to track-in from outdoor decks via foot traffic is significant compared to exposures from other sources.  相似文献   

11.
This study focuses on the heat balance status of laying hen houses in regions with continental climate. The material consists of 45 laying hen houses from 27 commercial farms selected from the survey area where continental climate prevails. These laying hen houses differ from each other with respect to capacity, planning system and materials used in construction. First observations were conducted on the size and dimensions of laying hen houses as well as construction materials used, insulation, heat loss factors, ventilation capacity, ground space per hen and total size of laying hen house in order to assess the sufficiency of heat balance. Then, seven laying hen house models were developed. These models were developed by considering the present situation in operating laying hen houses, relevant literature, features of continental climate and suggestions made by firms manufacturing laying hen house construction materials in Turkey. These models give heat conduction coefficients that will prevent moisture concentration and ensure heat balance under continental climate conditions and suggest different sets of materials that can be used on walls and roofs. At the end of the study, under the condition of no moisture on surface of structural components and in areas where the indoor and outdoor temperatures are 25.3 °C and 20.2 °C, respectively, maximum total heat conduction coefficients are calculated to be between 1.38 and 1.73 Kcal/m2 °C h. According to the features of area and housing, for providing heat balance, total heat conduction coefficients requirements are calculated to be between 0.62 and 2.08 Kcal/m2 °C h for walls, 0.33 and 1.62 Kcal/m2 °C h for roofs. In research area, minimum ventilation capacities are determined as 0.72 m3/h hen for carbon dioxide balance and, according to outdoor temperature, as 0.83–1.20 m3/h hen for water vapor balance. Heat loss factors are calculated to be between 0.10 and 0.15 Kcal/°C h hen. We believe that these suggestions will greatly facilitate the work of project engineers in the design of laying hen houses in regions and areas with continental climate.  相似文献   

12.
13.
An insulated concrete wall system1 was used on exterior walls of a zero energy house. Its thermal functions were investigated using actual data in comparison to a conventional wood frame system. The internal wall temperature of massive systems changes more slowly than the conventional wall constructions, leading to a more stable indoor temperature. The Energy10 simulated equivalent R-value and DBMS of the mass walls under actual climate conditions are, respectively, 6.98 (m2 °C)/W and 3.39. However, the simulated heating energy use was much lower for the massive walls while the cooling load was a little higher. Further investigation on the heat flux indicates that the heat actually is transferred inside all day and night, which results in a higher cooling energy consumption. A one-dimensional model further verified these analyses, and the calculated results are in good agreement with the actual data. We conclude that the thermal mass wall does have the ability to store heat during the daytime and release it back at night, but in desert climates with high 24-h ambient temperature and intense sunlight, more heat will be stored than can be transferred back outside at night. As a result, an increased cooling energy will be required.  相似文献   

14.
The main purpose of this study was to manufacture water-resistant particleboard for use in kitchens and bathrooms, and as flooring-based material and in outdoor environments. The chips were from recycled wood wastes of different wood species. The chips were divided into coarse chips with dimensions of 5–8 mesh and fine chips of 8–20 mesh, then, these chips were immersed in water-soluble phenol formaldehyde (PF) resin solution at concentrations of 4.5%, 6.5% and 10%. After 5 min, they were removed from the PF solution and dried in an oven until in a half-hardened condition. Three-layer mats with target densities of 0.70 and 0.80 g/cm3 were formed by using fine chips for the face layer (25%) and back layer (25%) and coarse chips for the core layer (50%). A conventional hot press was used for fabrication of the particleboard, and the temperature, pressure and pressing time were 453 K, 2.9 MPa, and 5 min, respectively. The nominal dimensions of particleboard were 500×500×12 mm (thick).  相似文献   

15.
The paper deals with numerical modeling of heat and moisture transfer behavior of a fabric slab during combined drying and pyrolysis. The model incorporates the heat-induced changes in fabric thermo physical properties and the drying process is described by a one-step chemical reaction in the model. The new model has been validated by experimental data from modified Radiant Protective Performance (RPP) tests of fabrics. Comparisons with experimental data show that the predictions of mass loss rates, temperature profiles within the charring material and skin simulant, and the required time to 2nd skin burn are in reasonably good agreement with the experiments. It is concluded that moisture increases the time to 2nd degree skin burn for fabrics exposed to low intensity heat flux of 21 kW/m2, but under high heat flux exposures, such as 42 kW/m2, moisture tend to increase heat transfer through the thermal protective fabric system and the tolerance time of the same fabrics will reduce. The model can find applications not only in thermal protective clothing design, but also in other scientific and engineering fields involving heat transfer in porous media.  相似文献   

16.
Wood is a hygroscopic material and has ability to exchange its moisture content with air. Many mechanical properties are affected by changes in moisture content below the fiber saturation point of wood. This study evaluates the formaldehyde emission and some mechanical properties of poplar and spruce plywood panels manufactured from rotary cut veneers having different moisture content by using urea–formaldehyde (UF) and modified urea formaldehyde by melamine (M+UF). Rotary cut veneers obtained from poplar and spruce logs were classified into three groups and veneers in each group were then conditioned in a climate chamber to either 4–6%, 10–12% or 16–18% moisture content. Plywood panels with three plies and in 6 mm thickness were manufactured for each group. Formaldehyde emission, shear strength, bending strength and modulus of elasticity values of plywood panels were determined. Best bonding results were obtained in plywood panels with veneers having 4–6% moisture content. Lowest mechanical properties were found for plywood panels manufactured from veneers conditioned to 16–18% moisture content. Formaldehyde emission values of poplar and spruce plywood panels decreased with increasing veneer moisture content for both glue types. Formaldehyde emission content of panels decreased with melamine addition into the urea formaldehyde glue mixture.  相似文献   

17.
A double-skin system (double-glazed external wall) is an effective passive system that can be used to decrease solar heat gain into buildings. Detailed information on the thermal distribution of double-skin facades is necessary to design better systems that can provide thermal comfort and conserve energy. In this study, the three-dimensional thermal characteristics of double-skin facades that had the ventilation opening installed partially and were screened partially by the adjacent buildings were investigated by field measurements. To that end, field measurements were carried out on the double-skin exterior wall (9.4 m high and 27.0 m wide) installed in an atrium located in the west of an existing building during cooling period for typical summer conditions. Maximum air change rate of natural ventilation through the bottom opening up to the top opening is about 20–25 [1/h], the reduction ratio of total solar heat gain compared with those of non-natural ventilation is about 25%. The exhaust solar heat gain is about 100 W/m2 per inner glass surface area of the double-skin facades. Air temperature distribution of air space in the double skin was ranged from 30 °C to 44 °C, and heat gain difference ranged from 50 W/m2 to 130 W/m2. The influence of the ventilation openings and the shade conditions on temperature distribution of double skin is found to be significant and the double-skin system was verified to reduce the cooling loads effectively.  相似文献   

18.
A room using carbon black mortar slabs (CBMS) as the electrical floor heating element has been built in our lab. Studies showed that an electrical power of about 123.8 W/m2 resulted in the indoor temperature rise of 10 °C within 330 min. Temperature distribution along the height of the room was uniform. Temperature rise was slightly higher if floor tiles rather than the wood flooring was used. In the process of heating, self-heating of CBMS has consumed more than 30% of the generated heat by Joule effect, which was advantageous for the stability of the thermal state. The indoor air absorbed over 50% of the generated heat. Results derived from repeated tests show that the electrical power of the CBMS system was stable during several cycles of heating. Further, the procedure and power consumption for the system to maintain a certain indoor temperature were studied. Continuous tests for 72 h has shown that the higher the indoor controlled temperature was, the longer the working time and the shorter the rest time in every cycle of heating were required. Accordingly, the power consumption to maintain the heat state increased with the controlled temperature increasing.  相似文献   

19.
The thermophilic oxic process (TOP) is a composting process that enables simultaneous complete decomposition and evaporation of organic waste under high temperature conditions supported by well-balanced calorific value control. To develop the simulation model for TOP, three-dimensional relationships among decomposition rate constant, temperature (20-70 °C) and moisture content (30-70%) were determined for swine waste and cooking oil based on the oxygen consumption rate during a thermophilic oxic decomposition reaction.The decomposition rate of swine waste and cooking oil under various moisture contents was described by the Arrhenius equation. The optimal temperature and moisture content were 60 °C and 60% for swine waste and 60 °C and 50% for cooking oil, respectively. The simulation model for TOP was constructed on the basis of the carbon, heat, and moisture balance. The validation of the simulation model was examined by comparing the measured temperature in the TOP reactor to that estimated by the simulation. The simulation model was proven by comparing experimental and calculated values. The relationship between the injection calorific value and the process mechanism of TOP was interpreted by the simulation model. On the basis of their relationship during TOP, the appropriate process conditions were discussed.  相似文献   

20.
This paper presents the results of an experimental and analytical investigation on the structural behaviour of a composite panel system consisting of two outer skins of profiled thin-walled steel plates with lightweight foamed concrete (LFC) core under axial compression. The gross dimensions of the test specimens were 400 mm×400 mm×100 mm. A total of 12 tests were carried out, composed of two duplicates of 6 variants which were distinguished by two steel sheeting thicknesses (0.4 mm and 0.8 mm) and three edge conditions of the sheeting. The density of LFC was 1000 kg/m3. Experimental results include failure modes, maximum loads and load-vertical strain responses. In analysis, full bond between the steel sheets and the concrete core was assumed and the LFC was considered effective in restraining inward buckling of the steel sheets. Using the effective width method for the steel sheets, the load carrying capacities of the test specimens were calculated and compared with the experimental results. It was found that a combination of the Uy and Bradford plate local buckling coefficients with the Liang and Uy effective width formulation produced calculation results in good agreement with the experimental results. Finally, a feasibility study was undertaken to demonstrate the applicability and limit of this new composite walling system in low rise construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号