首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
对22Mn B5热成形钢进行淬火和回火处理,利用扫描电镜、透射电镜、电子背散射衍射技术、室温拉伸检测等方法研究回火温度对22Mn B5热成形钢显微组织和力学性能的影响。结果表明:随着回火温度(100~500℃)的升高,22Mn B5热成形钢的抗拉强度逐渐降低,温度超过200℃后显著降低,屈服强度先略为降低(100℃)再略为升高(200℃)最后显著降低(超过200℃),总伸长率逐渐提高,板条马氏体发生回复和再结晶,板条间的小角度晶界减少,板条边界逐渐模糊,马氏体板条粗化明显;经200℃保温10 min回火后,大部分板条马氏体略有粗化,屈服强度较100℃保温10 min先降低后略为提高至1292 MPa,伸长率为6.2%,出现硬化效应,热成形钢的综合力学性能得到明显改善。  相似文献   

2.
借助光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)与万能拉伸试验机等研究了铌元素的添加对51CrV钢奥氏体晶粒尺寸、淬火和回火组织以及力学性能的影响。结果表明:0Nb和0.02wt%Nb试验钢的奥氏体平均晶粒尺寸分别为10.0 μm和3.1 μm,添加0.02wt%Nb的51CrV钢奥氏体晶粒尺寸显著细化、板条马氏体尺寸减小,回火过程中析出碳化物的尺寸更细,两种试验钢850 ℃淬火+400 ℃回火后,屈服强度均大于1300 MPa,抗拉强度均大于1400 MPa。而加入0.02wt%Nb试验钢由于晶粒细化,断后伸长率达到9.50%,不含Nb试验钢伸长率为8.69%。51CrV钢添加微量的Nb元素在保证高强度的同时,塑性得到提高,综合性能比无Nb钢优异。  相似文献   

3.
研究了淬火后回火温度对一种新型低合金高强度无缝钢管的组织和力学性能的影响。结果表明:试验钢管经930℃淬火和0~750℃回火后,抗拉强度为959~1 375 MPa; 200和700℃回火后冲击吸收能量最高,400及500℃回火后冲击吸收能量最低,并出现了回火马氏体脆性。200℃回火后抗拉强度为1 375 MPa,断后伸长率为13.8%,断面收缩率为60.9%,冲击吸收能量为63.4 J。700℃回火后抗拉强度为981 MPa,断后伸长率为18.8%,断面收缩率为51%,冲击吸收能量为68.7 J。200℃回火组织为回火马氏体和少量残留奥氏体,700℃回火组织为回火索氏体。  相似文献   

4.
对Fe-Mn-Si-Cr超高强钢进行了淬火+回火热处理,采用扫描电镜(SEM)、拉伸试验等方法研究了不同温度淬火对试验钢组织与力学性能的影响。结果表明:经750~810℃亚温淬火,Fe-Mn-Si-Cr钢组织为铁素体与马氏体混合组织。随着淬火温度的升高,组织中铁素体含量逐渐减少,马氏体含量逐渐增多。880℃完全淬火后,Fe-Mn-Si-Cr钢的组织为板条马氏体组织。810℃/30 min淬火+480℃/30 min回火的Fe-Mn-Si-Cr钢,综合力学性能最佳,其抗拉强度、伸长率和强塑积分别达到1679 MPa、11.2%和18805 MPa·%,与880℃完全淬火试验钢相比,试验钢的抗拉强度相当,而伸长率、强塑积分别提高了6.7%、6.3%。  相似文献   

5.
陈建华  蓝秀琼 《金属热处理》2020,45(11):163-166
利用光学显微镜和透射电镜(TEM)研究了PRO500高强装甲钢经淬火、回火后显微组织与力学性能的演变规律。结果表明:870 ℃淬火组织为板条马氏体,随回火温度升高,马氏体逐渐完成分解,并伴随细小的碳化物颗粒析出、聚集长大,硬度总体呈逐渐下降趋势,600 ℃回火的硬度最低达到274 HV10;试验钢400 ℃回火可获得优良的综合力学性能,此时硬度为389 HV10,抗拉强度为1710 MPa,规定塑性延伸强度为1460 MPa,断后伸长率为11.0%。  相似文献   

6.
比较了含1.90%Ni和4.92%Ni中碳Cr-Ni-Mo系超高强度钢不同淬火温度低温回火后的力学性能,分析了淬火温度、残余奥氏体量对力学性能的影响。结果表明,900℃淬火200℃回火后试验钢的抗拉强度、伸长率和-40℃冲击吸收功分别大于2200MPa、10%和10J。随着淬火温度的提高,抗拉强度、断后伸长率和断面收缩率先缓慢提高到最大值后开始缓慢下降。4.92%Ni试验钢中大量残余奥氏体导致其屈服强度和屈强比降低、应变硬化指数增大,在拉伸过程中残余奥氏体应变诱导马氏体相变和相变诱发塑性(TRIP),伸长率、静力韧度和塑性变形能均有明显提高。  相似文献   

7.
采用膨胀仪测定了一种1800 MPa级冷轧热成形钢的相变点;通过OM、SEM、EBSD等方法检测了其经热轧和热成形后的显微组织,采用CCT-AY-Ⅱ型钢板连续退火机对其进行热处理,测量了其力学性能。结果表明:热轧后实验钢的组织为珠光体和铁素体,热成形后的组织为马氏体和极少量奥氏体。冷轧热成形钢在850℃保温淬火后其综合力学性能最好,抗拉强度最高达到1845 MPa,屈服强度也达到了1033 MPa,伸长率达到了7.4%;由EBSD分析可知,850℃保温后实验钢具有细小的原始奥氏体晶粒和马氏体组织及较高密度的小角度晶界,这是其保持较高的强度和伸长率的原因。  相似文献   

8.
研究了Si-Mn-Cr-Ni系低合金高强钢锻件在不同热处理工艺下的显微组织和力学性能。结果表明,试验钢经820℃正火后,锻件组织细化效果较好且分布均匀,再经920℃淬火和280℃低温回火后,其硬度为43.9 HRC,冲击吸收能量KV2为82.6 J,抗拉强度为1513.35 MPa,屈服强度为1221.92 MPa,伸长率为14.65%,此时组织为回火板条马氏体且晶粒尺寸细小,晶粒度为8.3级,达到最佳的强韧性匹配,试验钢的综合力学性能最优。  相似文献   

9.
采用膨胀仪测定了一种1800 MPa级冷轧热成形钢的相变点;通过OM、SEM、EBSD等方法检测了其经热轧和热成形后的显微组织,采用CCT-AY-Ⅱ型钢板连续退火机对其进行热处理,测量了其力学性能。结果表明:热轧后实验钢的组织为珠光体和铁素体,热成形后的组织为马氏体和极少量奥氏体。冷轧热成形钢在850℃保温淬火后其综合力学性能最好,抗拉强度最高达到1845 MPa,屈服强度也达到了1033 MPa,伸长率达到了7.4%;由EBSD分析可知,850℃保温后实验钢具有细小的原始奥氏体晶粒和马氏体组织及较高密度的小角度晶界,这是其保持较高的强度和伸长率的原因。  相似文献   

10.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

11.
采用力学性能测试、显微组织观察、扫描电镜观察,研究回火温度对Q1100超高强钢组织和性能的影响规律。结果表明:试验钢900 ℃保温后水淬再200~300 ℃回火后,为回火板条马氏体组织;在 400 ℃和500 ℃回火后,为回火屈氏体组织;在600 ℃回火后,为回火索氏体组织。试验钢具有较高的回火稳定性,在400~600 ℃回火时,α铁素体仍保持板条马氏体的形状和位向。在200 ℃回火后,小角度晶界含量较多,阻碍微裂纹扩展,韧性较好,随着回火温度的升高,小角度晶界占比逐渐减少,在400 ℃回火后,小角度晶界占比较少,碳化物的析出恶化试验钢的韧性,发生了回火脆性,韧性最差,500 ℃和600 ℃回火后,试验钢的小角度晶界占比较400 ℃相差不明显,但试验钢回复程度较大且600 ℃回火发生部分再结晶,回火软化作用较大,韧性较高。当回火温度为200 ℃时,试验钢具有最佳的综合性能,屈服强度为1164.38 MPa,抗拉强度为1429.70 MPa,断后伸长率为14.66%,硬度为430.27 HV3,标准试样-40 ℃冲击吸收能量为92.30 J。  相似文献   

12.
热冲压成形汽车零部件的室温组织为全马氏体组织,虽然强度高,但延展性差。为此,提出了一种采用热轧后直接淬火获得马氏体组织,随后在冲压工序进行回火以提高冲压件延展性的温冲压成形工艺。采用热轧实验机和MMS-200热力模拟实验机模拟温冲压成形过程,并对实验钢力学性能和组织结构进行了分析。结果表明:随温冲压成形温度的升高及保温时间的延长,实验钢成形后抗拉强度和维氏硬度值不断下降,伸长率呈先上升后下降再上升的趋势。随成形温度的增加,实验钢组织由马氏体不断转变为回火马氏体、回火屈氏体和回火索氏体。在350℃保温120~180 s,实验钢成形后力学性能最佳,抗拉强度超过1 500 MPa,伸长率大于8%,硬度值在425HV~440HV之间。冲压成形温度越高,对冲压设备所需求的力能参数越低。  相似文献   

13.
耿志宇  张宇  薛晗  薛峰  周天鹏 《金属热处理》2022,47(11):192-198
通过热力学计算软件Thermo-Calc计算了2000 MPa热成形钢的平衡相图、各相的析出温度、相中的元素含量、碳化物在不同温度下的长大规律以及不同Nb、V含量对其碳化物析出温度和析出量的影响规律。选定特定成分,利用50 kg真空炉进行了熔炼,并进行热轧和冷轧,利用平板模具淬火的方式模拟热成形工艺并进行了力学性能检测和三点弯曲性能检测。利用场发射扫描电镜和EBSD对组织进行了表征。结果表明,Nb、V微合金化2000 MPa热成形钢中的碳化物主要有NbC和VC,析出温度分别在1150 ℃以上及880 ℃以上,且其析出温度分别随着Nb和V含量的升高而升高。平板模具淬火后热成形钢板的抗拉强度超过2000 MPa,伸长率超过8%,拉伸断口为韧性断口,且三点弯曲角度超过66°。SEM和EBSD的结果表明,马氏体组织由马氏体束(packet)、马氏体块(block)和马氏体板条(lath)组成,原奥氏体晶粒约为10 μm,且马氏体块的尺寸<5 μm,马氏体块内部由马氏体板条组成,马氏体板条间为不连续的小角度晶界,晶界的取向差大部分小于5°。细小的原奥氏体晶粒和马氏体块组织是微合金化2000 MPa热成形钢具有高强度、高塑韧性的主要原因。  相似文献   

14.
研究了临界区回火温度对Fe-4Mn-1.2Cr-0.3Cu-0.6Ni中锰钢组织与力学性能的影响。通过热轧后直接淬火+临界区回火的工艺制备试验钢。采用光学显微镜(OM)、电子探针显微分析仪(EPMA)的扫描功能、透射电镜(TEM)、拉伸试验及冲击试验等对轧后淬火态和回火态试验钢的显微组织及力学性能进行了表征。结果表明,试验钢热轧后淬火可获得较高位错密度的板条马氏体,经过临界区回火后获得在回火马氏体基体上分布残留奥氏体的复合组织。随着临界区回火温度的升高,试验钢的抗拉强度呈升高趋势,而屈服强度先下降后增加,伸长率的变化趋势与试验钢中的残留奥氏体含量相关,冲击性能随临界区回火温度的升高呈先升高后降低的趋势。630 ℃回火后试验钢的拉伸性能最佳,650 ℃回火后试验钢的冲击性能最佳,确定最佳临界区回火温度区间为630~650 ℃。  相似文献   

15.
通过对Fe-12Cr-1.5W-0.2V-0.15Ta F/M钢包壳管材分别进行980~1150 ℃正火和600~730 ℃回火处理,研究不同热处理工艺对包壳管材微观组织、室温力学性能的影响。结果表明,不同温度正火处理后,F/M钢包壳管材的组织均为板条马氏体,随正火温度的升高,粗大的碳化物颗粒逐渐固溶至基体中,且原奥氏体晶粒尺寸会产生粗化,从1050 ℃的40 μm增至1150 ℃的80 μm;不同温度回火后,马氏体基体上析出细小纳米级碳化物颗粒,随回火温度增加,碳化物颗粒析出数量明显增加,但析出的碳化物颗粒尺寸无明显变化;包壳管材经过1100 ℃×60 min正火+650 ℃×90 min回火后具备良好的微观组织和力学性能,其原始奥氏体晶粒无明显长大,马氏体板条组织平均晶粒尺寸约为6.0 μm,小角度晶界比率为59.6%,沿着原奥氏体晶界有纳米相析出,晶内马氏体界面处析出大量纳米相,此时,管材表现出良好的强塑性匹配,抗拉强度为1024 MPa、屈服强度为849 MPa、伸长率为17.3%。  相似文献   

16.
王琪  吴光亮 《金属热处理》2022,47(4):146-150
研究了920 ℃水淬+不同温度回火后1100 MPa级高强钢的显微组织和力学性能。结果表明:回火温度为250 ℃时,所得到的力学性能最佳,抗拉强度、屈服强度、硬度、断后伸长率和冲击吸收能量分别为1423 MPa、1220 MPa、446 HV5、14.2%和56 J。随回火温度的升高,抗拉强度、屈服强度、硬度值整体呈现下降的趋势,冲击吸收能量先减小后增加。回火温度为150 ℃时,组织为回火马氏体和ε碳化物,析出的ε碳化物呈细长杆状。回火温度上升到250 ℃之后,马氏体板条稍有粗化,ε碳化物长大。随回火温度继续升高,板条马氏体逐渐转变为等轴铁素体,ε碳化物也会转变为渗碳体并逐渐球化粗化。  相似文献   

17.
对低活化马氏体钢丝材进行1000~1100 ℃保温60 min的正火处理,随后在790 ℃保温90 min进行回火处理,研究正火温度对低活化马氏体钢丝的显微组织及力学性能的影响。结果表明,正火后,丝材的显微组织由粒状珠光体转变为板条状马氏体,碳化物粒子大部分回溶于基体中,正火温度的升高加速碳化物粒子的回溶,在1100 ℃实现完全回溶;原奥氏体晶粒尺寸随正火温度升高显著增大(由1000 ℃的7.4 μm增至1100 ℃的34.9 μm)。回火处理后,马氏体板条尺寸变宽,板条间的位错密度显著降低,析出相沿晶界、晶粒内部析出、球化及长大,其中M23C6(M以Cr为主)相为短棒状,分布在晶界,而MX(M以Ta为主)相为椭球状,分布在马氏体板条内部。经1000 ℃×60 min正火+790 ℃×90 min回火后能够获得最佳的综合力学性能,其抗拉强度为745.7 MPa,断后伸长率为18.9%。  相似文献   

18.
针对特厚齿条用钢板的开发,通过微合金化设计、控制轧制、调质热处理等工艺,制备了两种不同成分的785 MPa级别高强韧特厚齿条钢,研究了不同回火温度下Nb、Ti对钢板微观组织和力学性能的影响。结果表明,随着回火温度的升高,试验钢板屈服强度、抗拉强度、硬度逐渐降低。NbTi钢板回火脆性区间为300~500 ℃,3Ni钢板回火脆性区间为200~550 ℃。Nb、Ti微合金化可显著细化奥氏体晶粒,增加了大角度晶界的比例和密度,从而提高了钢板的强度和冲击韧性。NbTi钢板在650 ℃回火时获得最优强韧性匹配,其屈服强度和-60 ℃冲击功分别为805 MPa和200 J;3Ni钢板在600 ℃回火时获得最优强韧性匹配,其屈服强度和-60 ℃冲击功分别为881 MPa和140 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号