首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Zinc oxide (ZnO) films were prepared successfully by simple thermal evaporation of zinc acetate dihydrate at low temperature onto FTO (fluorine-doped tin oxide) glass substrates coated with thin ZnO seed layer. The synthetic parameter such as temperature was found to determine the morphology of nanostructures. ZnO nanorod (NR) and nanoparticle (NP) films have been synthesized at 245 and 350 °C, respectively, for 6 h. The dye-sensitized solar cells (DSSCs) were fabricated using the ZnO nanostructure films as photosensitized electrodes. A maximum photoelectric conversion efficiency (PCE) of 1.56%, and short-circuit photocurrent density of 5.12 mA/cm2 were achieved with the ZnO NP-based DSSC. The PCE increase was ascribed to the reduced recombination loss and prolonged electron lifetime according to electrochemical impedance spectroscopy (EIS).  相似文献   

2.
It is well known that organic solar cells (OSCs) with inverted geometry have not only demonstrated a better stability and longer device life time but also have shown improved power conversion efficiency (PCE). Recent studies exhibit that incorporation of metal and/or semiconducting nanoparticles (NPs) can further increase the PCE for OSCs. In this present work, we have synthesized SiO2 NPs of various sizes (25, 50, 75 and 100 nm) using the modified Stober method and incorporated them into P3HT:PCBM photoactive layer and ZnO based electron transport layer (ETL) in order to investigate the light trapping effects in an OSC. Absorption studies have shown a considerable increase in photo absorption in both cases. The fabricated devices demonstrated 13% increase in the PCE when SiO2 NPs are incorporated in P3HT:PCBM photoactive layer, whereas PCE was increased by 20% when SiO2 NPs are incorporated in ZnO based ETL. Mott–Schottky analysis and impedance spectroscopy measurements have been carried out to determine the depletion width and global mobility for both the devices. The possible reason for PCE enhancement and the role of SiO2 NPs in active layer and ZnO ETL are explained on the basis of the results obtained from Mott–Schottky analysis and impedance spectroscopy measurements.  相似文献   

3.
This paper presents a high efficiency (~3.8%) inverted organic photovoltaic devices based on a P3HT:PCBM bulk heterojunction (BHJ) blend with improved electron- and hole-selective contact layers. Zinc oxide (ZnO) nanoparticle films with different thicknesses are deposited on the transparent electrodes as a nano-porous electron-selective contact layer. A thin gold film is used between the BHJ photoactive layer and the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), which improves the wettability and significantly enhances the stability of the device (>50 days of air exposure). Photovoltaic device parameters such as power conversion efficiency (PCE) and external quantum efficiency (EQE) are systematically examined for inverted devices with different thicknesses of ZnO and gold layers in comparison to the non-inverted and reference inverted devices with no contact layers. The optimized organic devices with ZnO and Au contact layers show exceptional short circuit currents (in excess of 13 mA/cm2), in comparison to the reference devices, which is related to increased quantum efficiency of the device observed in measured EQE experiments. These results are important for development of high efficiency and stable all-printed organic solar cells and point out the role of contact layers, in particular, ZnO conductivity and morphology in the device performance.  相似文献   

4.
《Organic Electronics》2014,15(9):1942-1950
Electron transporting layers (ETLs) in inverted polymer solar cells (I-PSCs) were fabricated by spin coating a colloidal dispersion of ZnO nanoparticles (NPs), and the effects of ultraviolet–ozone (UVO) treatment on the ZnO NP ETLs were investigated. The brief UVO treatment (<5 min) could considerably improve the performance of the resulting I-PSCs (∼30% increase in power conversion efficiency); whereas, excessive UVO treatment (>10 min) caused significant degradation. The characterization of the ZnO ETLs as a function of the UVO treatment duration revealed that brief treatment can remove the residual organic stabilizer molecules on the surface of the ZnO films by UV induced decomposition mechanism. However, excessive treatment can generate additional defects on/within the ZnO films, which can induce charge recombination. This effect was further confirmed by the thermal treatment of the ZnO ETLs at a high temperature (280 °C) at which the organic surfactants could be removed. Flexible I-PSCs were also fabricated using indium doped tin oxide coated plastic substrates and the usefulness of the room temperature UVO treatment was further confirmed in view of its potential applicability in flexible devices.  相似文献   

5.
This paper reports polymer solar cells with a 7% power conversion efficiency (PCE) based on bulk heterojunction (BHJ) composites of the alternating co-polymer, poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT), and the fullerene derivative [6,6]-phenyl C71-butyric acid methyl ester (PC71BM). As confirmed by transmission electron microscopy, solvent–vapor annealing (SVA) of the thin (70 nm) BHJ photoactive layer by exposure to chloroform vapor, for a short period of time (30 s) after deposition, leads to reconstructed nanoscale morphology of donor/acceptor domains, well-dispersed fullerene phase and effective photo-absorption of BHJ. Consequently, SVA-reconstructed devices with a PCDTBT:PC71BM blend ratio of 1:5 (wt%) exhibit ~50% improvement in PCE, with short-circuit current Jsc = 15.65 mA/cm2, open-circuit voltage Voc = 0.87 V, and PCE = 7.03%, in comparison to those of the 1:4 (wt%) blends with SVA treatment.  相似文献   

6.
We demonstrate cathodic multilayer transparent electrodes based on a ZnS/Ag/TiOx (ZAT) structure for ITO-free inverted organic solar cells. A quality solution-based TiOx layer is adopted as an inner dielectric layer to modify the effective work function of Ag, ensuring the ZAT electrode works as a cathode. The effect of the TiOx layer is seen on the open-circuit voltage of a solar cell incorporating this layer, increasing to 900 mV from 600 mV in the case of a cell with a bare Ag layer for a bulk-heterojunction of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C70-butyric acid methyl ester (PCBM70). The results of a joint theoretical and experimental study indicate that the photocurrent of a ZAT-based solar cell can be significantly enhanced by carefully balancing the optical-spacer and cavity-resonance effects, both of which are modulated by the thickness of the WO3 layer used as a hole-collection layer at the top anode side. ZAT-based inverted solar cells with an optimized structure exhibit a power conversion efficiency as high as 5.1%, which is comparable to that of the ITO-based equivalent.  相似文献   

7.
We investigated the effect of active layer thickness on recombination kinetics of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) based solar cells. Analysis of the fitted Lambert W-function of illuminated current density–voltage (JV) characteristics revealed increased recombination processes with increased active layer thicknesses. The ideality factor extracted from PCDTBT:PCBM solar cells continuously increased from 1.89 to 3.88 when photoactive layer thickness was increased from 70 to 150 nm. We found that such increase in ideality factor is closely related to the defect density which is increased with increased photoactive layer thickness beyond 110 nm. Therefore, the different density of defect states in PCDTBT:PCBM solar cells causes the different recombination paths where solar cells with a thicker active layer (?110 nm) are considered to undergo coupled trap-assisted recombination processes while single-defect trap-assisted recombination is dominant for thinner (70–90 nm) PCDTBT:PCBM solar cells. As a result, we found that the optimal efficiencies of PCDTBT:PC71BM solar cells were limited to the active layers between 70 and 90 nm. Particularly, when PCDTBT:PC71BM solar cells were optimized with an active layer thickness of 70 nm, energy conversion efficiency reached 6.5% while an increase in thickness led to the reduction of efficiency to 4.7% at 133 nm but then an increase to 5.02% at 150 nm.  相似文献   

8.
《Organic Electronics》2014,15(4):913-919
Efficient bulk-heterojunction polymer solar cells based on poly(3-hexylthiophene) (P3HT) blended with a fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were fabricated in inverted configuration by using copper phthalocyanine-3,4′,4′′,4′′′tetra-sulfonated acid tetrasodium salt (TS-CuPc) as the electron collecting layer and MoO3 as hole collecting layer. TS-CuPc is observed to be critical for the device performance, significantly enhancing the Jsc and the PCE compared to devices based on TiOx. The optimal thicknesses of MoO3 and TS-CuPc were 10 nm and 15 nm, respectively. Based on these optimal parameters, the PCE of 3.6% was obtained compared to 3.4% for the reference TiOx/P3HT:PCBM/MoO3/Ag.  相似文献   

9.
In this study, polymer solar cells (PSCs) doped with Au nanoparticles (Au NPs) were successfully fabricated to maximize the photon-harvesting properties on the photoactive layer. In addition, a conductivity-enhanced hybrid buffer layer was introduced to improve the photon absorption properties and effectively separate the generated charges by adding Au NPs and dimethylsulfoxide (DMSO) to the PH 500 as a buffer layer. The PSC performance was optimized with a 88% improvement over the conventional PSCs (photoactive area: 225 mm2, power conversion efficiency (PCE): 3.2%) by the introduction to the buffer layer of Au NPs and DMSO at 10 wt% and 1.0 wt%, respectively, and with 15 wt% Au NP doping in the photoactive layer. The internal resistance was decreased due to the increased photocurrent caused by the localized surface plasmon resonance (LSPR) effect of the Au NPs in the photoactive layer and by the improvement of carrier mobility induced by the DMSO doping of the buffer layer. As a result, the series resistance (RS) deceased from 42.3 to 19.7 Ω cm2 while the shunt resistance (RSH) increased from 339 to 487 Ω cm2.  相似文献   

10.
An inverted organic bulk-heterojunction solar cell containing a zinc oxide (ZnO) based electron collection layer with a structure of ITO/ZnO/[6,6]-phenyl C61 butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene): poly(4-styrene sulfonic acid)/Au (ZnO cell) was fabricated. We examined the relationship between the heating temperature of the ZnO layer and the device performance under irradiation by simulated sunlight while cutting the UV light. The effects of the UV light contained in simulated sunlight were investigated by photocurrent–voltage (IV) and alternating current impedance spectroscopy (IS) measurements. When the ZnO cells were irradiated with simulated sunlight, they exhibited a maximum power conversion efficiency (PCE) of over 3%, which hardly varied with the heating temperature of ZnO layers treated at 250 °C, 350 °C, and 450 °C. In contrast, when the ZnO cells were irradiated with simulated sunlight without UV content, their photovoltaic characteristics were very different. In the case of the cell with ZnO prepared by heating at 250 °C, PCE of 2.7% was maintained even under continuous irradiation with simulated sunlight without UV. However, for the cells with ZnO prepared by heating at 350 °C and 450 °C, the shapes of the IV curves changed with the UV-cut light irradiation time, accompanying an increase in their series resistance. Overall, after UV-cut light irradiation for 1 h, the PCE of the cell with ZnO prepared by heating at 350 °C decreased to 1.80%, while that of the cell with ZnO prepared by heating at 450 °C fell to 1.35%. The photo IS investigations suggested that this performance change was responsible for the formation of charge-trapping sites at the ZnO/PCBM:P3HT interface which act as recombination centers for photo-produced charges in the PCBM:P3HT layer.  相似文献   

11.
The performance enhancement of inverted polymer solar cells (PSCs), based on the blend system of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methylester, due to incorporating ultrathin Au and LiF interlayer between the front transparent indium tin oxide and a ZnO electron transporting layer was analyzed. The results reveal that a 40% increase in PCE, e.g., from 2.62% to 3.67%, was observed for PSCs made with an optimal Au/LiF interlayer as compared to the one having a bare ZnO electron transporting layer. The presence of Au/LiF-modified ZnO interlayer between ITO and the organic layer helps to improve the charge collection. The absorption enhancement arising from the plasmon resonance of Au nanostructures also contributed to the improvement in PCE. It is shown that PSCs with LiF incorporated ZnO electron transporting layer allow improving cell lifetime, demonstrating <50% decrease in PCE compared to that of the ones with a bare ZnO interlayer after 240 day aging test for cells without encapsulation in air.  相似文献   

12.
《Organic Electronics》2014,15(8):1745-1752
The performance of both inverted and conventional polymer solar cells (PSCs) were examined with a low-temperature, solution-processed synthesized TiO2 nanoparticles (TiO2 NPs) as the electron extraction layer. The performance of inverted PSCs based on P3HT:PCBM bulk-heterojunction with a TiO2 NPs layer was dramatically improved and the highest power conversion efficiency (PCE) of 4.56% was achieved via 24 h exposure in air, which is one of the highest PCEs for P3HT:PCBM bulk-heterojunction PSCs using TiO2 as electron extraction layer. Meanwhile, the performance of inverted PSCs was superior to regular PSCs. Mott-Schottky capacitance analysis was carried out for both inverted and regular PSCs to obtain the built-in potential, the depletion width, as well as the doping level of the active layer, which all support the performance improvement of PSCs devices with inverted structure. In addition, inverted PSCs show excellent stability in air without encapsulation. The PCE can retain 87% of its original values after 400 h exposure in air, which is much better than that of regular PSCs. The results indicate that solution-processed TiO2 NPs shows great potential applications in the fabrication of highly efficient and stable inverted PSCs as well as large-area, flexible printed PSCs.  相似文献   

13.
Photo-conversion efficiency of inverted polymer solar cells incorporating pulsed laser deposited ZnO electron transport layer have been found to significantly increase from 0.8% to up to 3.3% as the film thickness increased from 4 nm to 100 nm. While the ZnO film thickness was found to have little influence on the morphology of the resultant ZnO films, the band structure of ZnO was found to evolve only for films of thickness 25 nm or more and this was accompanied by a significant reduction of 0.4 eV in the workfunction. The films became more oxygen deficient with increased thickness, as found from X-ray photoelectron spectroscopy (XPS) and valence band XPS (VBXPS). We attribute the strong dependence of device performance to the zinc to oxygen stoichiometry within the ZnO layers, leading to improvement in the band structure of ZnO with increased thickness.  相似文献   

14.
Zinc oxide (ZnO) has recently shown to be of considerable interest for the development of interfacial buffer layers in inverted organic solar cells (OSCs). High quality ZnO thin films can indeed be prepared on large-area ITO-coated flexible substrates, using low temperature deposition techniques such as sputtering, a compatible technique with roll-to-roll process. However, further studies are still needed for a better understanding of the influence of the flexible substrate properties on the photovoltaic performances of those devices. In this work, ZnO films have been sputtered on ITO-coated flexible (PEN) substrates and annealed at different temperatures. The role of the surface morphology and the crystalline quality of ZnO films has been investigated. In the window of flexible compatible process, we found that moderate annealing temperatures of ZnO (?180 °C) lead to improved structural properties and performances. Interestingly, we achieve optimal performances for an annealing temperature of 160 °C, resulting in power conversion efficiency (PCE) equivalent to the highest performances usually achieved on rigid cells.  相似文献   

15.
We report a novel method to grow silver nanoparticle/zinc oxide (Ag NP/ZnO) thin films using a dual-plasma-enhanced metal-organic chemical vapor deposition (DPEMOCVD) system incorporated with a photoreduction method. The crystalline quality, optical properties, and electrical characteristics of Ag NP/ZnO thin films depend on the AgNO3 concentration or Ag content and annealing temperature. Optimal Ag NP/ZnO thin films have been grown with a AgNO3 concentration of 0.12 M or 2.54 at%- Ag content and 500 °C- rapid thermal annealing (RTA); these films show orientation peaks of hexagonal-wurtzite-structured ZnO (002) and face-center-cubic-crystalline Ag (111), respectively. The transmittance and resistivity for optimal Ag NP/ZnO thin films are 85% and 6.9×10−4 Ω cm. Some Ag NP/ZnO transparent conducting oxide (TCO) films were applied to InGaN/GaN LEDs as transparent conductive layers. The InGaN/GaN LEDs with optimal Ag NP/ZnO TCO films showed electric and optical performance levels similar to those of devices fabricated with indium tin oxide.  相似文献   

16.
We investigate the effects of ZnO annealing temperature (TA) on the performance of inverted polymer solar cells with ZnO electron-selective layers deposited by spin coating aqueous solutions of an ammine-hydroxo zinc complex. The inverted solar cells based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester with TA as low as 80 °C exhibit power-conversion efficiencies of 3.6%, which is equal to those of devices with higher TA. Characterizations of the ZnO films using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, grazing incidence wide-angle X-ray scattering, and optical transmittance measurements show that the abrupt improvement of device performance from TA = 60 to 80 °C is due to the improvement of energy-level alignment arising from the increases in the relative amount and the crystallinity of ZnO.  相似文献   

17.
Flexible and air-stable polymer solar cells were fabricated on a polyethylene terephthalate (PET) substrate. The cell structure was indium tin oxide (ITO) on PET/zinc oxide (ZnO)/[6,6]-phenyl C61 butyric acid methyl ester (PCBM):regioregular poly(3-hexylthiophene) (P3HT)/poly (3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au, this being called the ZnO cell. Reproducible cell performances were obtained despite the ZnO cells being fabricated in air and at low temperature, using a novel ZnO precursor solution containing zinc(II) acetylacetonate as a metal source and acetylacetone as a Zn2+ complexing agent. The power conversion efficiency (PCE) of the flexible ZnO cells without sealing was 2.15% under irradiating AM1.5G simulated sunlight at 100 mW cm?2. In addition, the performance of the non-sealed ZnO cells was almost constant in ambient atmosphere under continuous light irradiation for 100 h.  相似文献   

18.
Solution processed CH3NH3PbIxCl3–x based planar heterojunction perovskite solar cells with power conversion efficiency (PCE) above 14% are reported. The devices benefit from a phenyl-C61-butyric acid methyl ester (PCBM)/ZnO double electron transport layer (ETL) as well as a short air-aging step. The role of the additional ZnO ETL is studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and secondary ions mass spectroscopy (SIMS). Apart from improving the energy level alignment, the ZnO layer blocks the reactions between the metal electrode and perovskite components, increasing the air stability of the device. A crucial step in our processing is a short air-aging step for the device, which significantly increases the device performance by reducing the recombination process. Since the ZnO nanoparticle layer requires no thermal annealing, the maximum temperature to fabricate the device can be kept below 100 °C, making this structure compatible with roll-to-roll processing on plastic films.  相似文献   

19.
《Organic Electronics》2014,15(5):1050-1055
Organic field-effect transistors (OFETs) were fabricated through a solution process with a donor–acceptor (D–A) conjugated polymer poly{4,8-bis(2′-ethylhexylthiophene)benzo [1,2-b;3,4-b′]difuran-alt-5,5-(4′,7′-di-2-thienyl-5′,6′-dioctyloxy-2′,1′,3′-benzothiadiazole)} (PBDFTDTBT) as the active layer, which is a highly efficient D–A conjugated polymer as a donor in polymer solar cells with a power conversion efficiency (PCE) over 6.0%. The OFET devices showed a hole mobility of 0.05 cm2/Vs and an on/off ratio of 4.6 × 105. Those are one of the best performance parameters for OFETs based on D–A conjugated polymers including benzo[1,2-b:4,5-b′]dithiophene (BDT) or benzo[1,2-b:4,5-b′]difuran (BDF) unit. The photoresponse of OFETs was investigated by modulating light with various intensities. The devices produced a photosensitivity (Ilight/Idark) of 1.2 × 105 and a photoresponsivity of 360 mA W1 under white light illumination. The drain current in saturation region increases gradually with increasing illumination intensity. The threshold voltage exhibited a positive shift from −15.6 V in darkness to 27.8 V under illumination, which can be attributed to the well-known photovoltaic effect resulting from the transport of photogenerated holes and trapping of photogenerated electrons near the source electrode in organic phototransistors. Meanwhile, the devices showed good stability and with no obvious degeneration for 3 months in air. The study suggests that D–A conjugated polymers including BDF unit can be potentially applied in OFETs and organic phototransistors in addition to highly efficient polymer solar cells.  相似文献   

20.
We report a unique nano-ridge structure of zinc oxide (ZnO) and its application in high performance inverted polymer solar cells. The ZnO nano-ridge structure was formed by a sol–gel process using a ramp annealing method. As the solvent slowly evaporated due to the low heating rate, there was sufficient time for the gel particles to structurally relax and pile up, resulting in a dense and undulated film. Nano-ridges with peak as high as 120 nm and valley to valley distance of about 500 nm were formed. This film provided an effective hole blocking layer and also an increased interfacial area for electron collection. An inverted bulk heterojunction polymer solar cell was fabricated using the ZnO nano-ridge film as the electron collecting layer. The device showed a high power conversion efficiency of 4.00%, an improvement of about 25% over similar solar cells made with a planar film of ZnO nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号