首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
对一种中碳贝氏体钢进行900℃保温1h奥氏体化处理,分别在200、250、300℃进行不同时间的等温处理,测定维氏硬度,观察金相组织,并对其微观结构进行透射电镜分析,研究了试验钢的热处理工艺、硬度和微观结构的相关性。结果表明:试验钢等温处理后的室温组织由贝氏体、马氏体和残余奥氏体组成;随保温时间延长,马氏体含量逐渐减少,贝氏体含量逐渐增多,并趋于稳定,相应地,试样硬度逐渐降低,趋于平缓;贝氏体亚结构由纳米级板条状贝氏体铁素体及板条间残留奥氏体构成,没有碳化物析出。  相似文献   

2.
用光学显微镜、扫描电子显微镜及X射线衍射仪对20Mn2SiVB钢在贝氏体区不同温度等温不同时间所获得的组织和形态进行了研究。试验表明,20Mn2SiVB钢在贝氏体等温转变时,首先在奥氏体晶界析出贝氏体铁素体,随着等温时间的延长,铁素体板条增多,分割奥氏体晶粒,形成贝氏体铁素体和其板条间的富碳奥氏体岛;在920 ℃奥氏体化,420 ℃贝氏体区等温不同时间后空冷所获得组织为:无碳化物贝氏体、粒状贝氏体、残留奥氏体和马氏体,各相的体积分数随着保温时间的不同有所变化。在920 ℃奥氏体化420 ℃等温5 min后,试样可获得较好的综合性能,具有一定的TRIP效应,其Rm≈ 1090 MPa;A。≈ 15.4%  相似文献   

3.
采用光学显微镜、扫描电镜和x射线衍射仪对20Mn2SiVB钢在两相区加热贝氏体区等温不同时间所获得的组织形态和相结构进行了研究,并进行了拉伸试验.结果表明,20Mn2SiVB钢经760℃两相区加热后在420℃贝氏体区等温过程中,首先在奥氏体晶界析出贝氏体铁素体,随着等温时间的延长,铁素体板条增多,分割奥氏体晶粒,形成贝氏体铁素体和其板条间的富碳奥氏体小岛.所获得组织为先共析铁素体、无碳化物贝氏体、粒状贝氏体、残留奥氏体和马氏体.拉伸试验表明,在760℃加热420℃等温5 min后,试样可获得较好的综合性能,其抗拉强度σb≈970 MPa,伸长率δ6≈14.9%.  相似文献   

4.
研究了终冷温度和等温时间对中低碳纳米贝氏体钢显微组织演变的影响。结果表明,实验钢采用缓冷至低于Ms0温度后等温工艺,可获得纳米贝氏体钢。随着终冷温度降低,贝氏体增多,残留奥氏体的含量先升高后降低,300℃终冷,组织中未转变奥氏体大量转变为贝氏体,残留奥氏体减少,贝氏体板条最细,可达200~300 nm;300℃等温,随着等温时间增加,碳含量不同的未转变奥氏体,在低于实验钢Ms0温度高于未转变奥氏体Ms'温度时,相继发生贝氏体转变,组织中贝氏体的含量不断升高,等温5 h后,贝氏体含量高于75%。  相似文献   

5.
设计了一种以无碳化物贝氏体为主要组织的1500 MPa级Si-Mn-Cr-Ni-Mo系超高强度钢,对比研究了实验钢轧后经空冷、先水冷至550℃后空冷和先水冷至450℃后空冷3种冷却工艺的显微组织和力学性能。结果表明:实验钢轧后直接空冷获得无碳化物贝氏体+少量M/A组织,先水冷后空冷得到无碳化物贝氏体+少量马氏体组织。组织中对性能尤其是韧性性能有显著影响的残留奥氏体薄膜的形貌和分布随冷却工艺的变化而变化,空冷冷却残留奥氏体薄膜分布在贝氏体铁素体板条间,先水冷再空冷冷却残留奥氏体薄膜不仅存在于贝氏体铁素体板条间,在板条内部也可以观察到少量细小的膜状残留奥氏体,分割贝氏体铁素体板条,起到了细化晶粒的作用,有益于实验钢力学性能的提升。先水冷至550℃后空冷,实验钢的抗拉强度可达1600 MPa,-20℃冲击吸收功为28 J,具有最优的综合力学性能。  相似文献   

6.
何涛 《轧钢》2022,39(5):27-33
为明确超级贝氏体组织失稳机制以及探索提高超级贝氏体钢中残余奥氏体热稳定性的方法,通过预相变马氏体工艺,即在等温贝氏体相变前引入预相变马氏体,制备了中碳超级贝氏体钢。对比分析了回火前后中碳超级贝氏体钢显微组织和力学性能的变化,研究了预相变马氏体对中碳超级贝氏体钢中贝氏体组织及残余奥氏体热稳定性的影响。结果表明:预相变马氏体的存在能够细化贝氏体铁素体板条,提高残余奥氏体含量和热稳定性。预相变马氏体的引入及其对超级贝氏体组织的细化作用使得试验钢的屈服强度超过1 000 MPa,伸长率大于20%;300~600 ℃回火1 h后,高碳薄膜状残余奥氏体首先发生分解,形成细小的碳化物,然后贝氏体铁素体板条发生回复和再结晶,形成沿原板条方向的铁素体晶粒;600 ℃回火后试验钢的屈服强度仍与回火前相当,主要是预相变马氏体周围的薄膜状残余奥氏体未发生明显分解,能够抑制相邻贝氏体铁素体板条的回复。  相似文献   

7.
高碳高硅钢经300和340℃等温淬火后获得了纳米贝氏体组织,采用扫描电镜、透射电镜、显微硬度仪和拉伸及冲击试验等研究了其经200~600℃回火处理后的显微组织和力学性能.结果 表明,在相同回火条件下,与340℃等温淬火试样相比,300℃等温淬火试样的强度、硬度和冲击韧性较高,塑性较低.纳米贝氏体组织在300℃以下具有良好的回火稳定性,450℃回火时薄膜状残留奥氏体开始分解,贝氏体铁素体板条开始合并粗化.低于450℃回火,试验钢的抗拉强度和屈服强度略有增高,伸长率和硬度变化不大.500℃回火,强度开始明显降低,塑性和冲击韧性最低,硬度升到最高而出现二次硬化.300℃回火后试验钢的冲击韧性最高,两种等温淬火试样均在300℃回火时得到最佳的综合力学性能.  相似文献   

8.
研究了H13模具钢的常规马氏体(油淬火+580℃回火)和无碳化物贝氏体(300℃等温处理)的相变行为,以及显微组织对其冲击磨损性能的影响。结果表明:试验钢经贝氏体等温后形成了由板条状贝氏体铁素体和残留奥氏体组成的无碳化物贝氏体组织;贝氏体铁素体+残留奥氏体组织的冲击磨损性能在磨损后期(1.5和2.0 h)优于马氏体组织。这是由于马氏体组织容易产生微裂纹,产生大量犁削,从而导致耐磨性能降低,而无碳化物贝氏体组织在冲击磨损过程中使表层发生剧烈的塑性变形,诱导微观组织中的残留奥氏体转变成α相铁素体,能够阻止试验钢基体在冲击磨损过程中产生切削,从而提高其耐磨性。  相似文献   

9.
利用光学显微镜、透射电镜、显微硬度计等对高碳贝氏体钢的显微组织及亚结构进行观察和研究。结果表明,试验钢在250~280 ℃等温处理可获得细小针状下贝氏体组织;随着等温时间的延长硬度逐渐下降;贝氏体组织亚结构由纳米级板条贝氏体铁素体及板条间奥氏体构成,没有碳化物析出。  相似文献   

10.
研究了碳含量1.26wt%的超高碳钢在等温淬火后的组织及其对拉伸力学性能的影响。结果表明,超高碳钢的等温淬火组织为超级贝氏体(Superbainite)+残留碳化物的复相组织。超级贝氏体的形成是因为超高碳钢中的高碳成分及铝元素的添加。由于原奥氏体晶粒细化,超级贝氏体的形核率增加,长大路径缩短,使转变速率加快。形貌观察表明,贝氏体铁素体片和残留奥氏体薄膜的厚度只随着等温温度的降低而减小;奥氏体化温度对贝氏体铁素体片厚度没有影响,但超级贝氏体组织的尺寸会随奥氏体化温度提高而增加。拉伸试验结果表明,随着等温时间的延长,抗拉强度逐渐升高,但断后伸长率却先增加后减小;等温温度或奥氏体化温度升高均会引起抗拉强度降低,但伸长率增加。  相似文献   

11.
Changes in microstructure and mechanical properties of medium-carbon spring steel during austempering were investigated. After austempering for 1 h at 290 °C or 330 °C, the bainite transformation stabilized austenite, and microstructure consisting of bainitic ferrite and austenite could be obtained after final cooling; the retained austenite fraction was smaller in the alloy austempered at 290 °C because carbon redistribution between bainitic ferrite and austenite slowed as the temperature decreased, and thereby gave persistent driving force for the bainite transformation. The products of tensile strength and reduction of area in the austempered alloy were much larger in the austempered steel than in quenched and tempered alloy, mainly because of significant increase in reduction of area in austempered alloy.  相似文献   

12.
Austempered ductile iron (ADI) exhibits a favourable combination of strength and toughness, and has been used as a substitute for quench-tempered or carburise-quenched steel. A characteristic feature of bainite transformation of cast iron, as opposed to carbon steel, is that precipitation of carbide is suppressed by the high concentration of silicon. Thus, a favourable structure, consisting of bainitic ferrite and retained austenite without carbide, can be provided by the optimum austempering treatment. Such microstructure and the mechanical properties of the iron are significantly affected by the conditions of the austempering treatment and the chemical composition. In this study, several grades of ductile iron were austempered under various conditions. The relationship between the impact strength, the quantity of retained austenite and the isothermal transformation curve was investigated. The stability of the retained austenite is considered important, because ADI contains a large amount of retained austenite which contributes to the improvement of ductility and toughness and which may transform to martensite when held at low temperature or subjected to stress. In this study, the stability of the retained austenite at low temperatures was examined by holding or stressing to establish the relations between transformation and temperature, stress and strain.

When the austempering time is short, the untransformed austenite partially transforms to martensite during air cooling, due to the lower carbon content, resulting in lower impact strength. As the austempering time increases, the untransformed austenite is stabilised by carbon-enrichment and there is little transformation to martensite, resulting in a large amount of retained austenite and higher impact strength. When the austempering time becomes much longer, the carbon-enriched austenite decomposes, presumably to bainitic ferrite and carbide, decreasing impact strength. In increasing the silicon content, precipitation of carbide in bainite is suppressed and both the maximum impact value and the content of retained austenite increase. The decreasing rates after the maxima through an additional isothermal holding becomes smaller.

By holding at temperatures down to –40°C, the decrease in retained austenite and the increase in hardness are both small. The retained austenite is stable under stress lower than that required to cause plastic deformation. Compressive stress hinders the martensitic transformation, because the transformation is accompanied by volume expansion.  相似文献   

13.
The variation in the austempered microstructure, the volume fraction of retained austenite, Xλ, the average carbon content of retained austenite, Cλ, their product XλCλ and the size of bainitic ferrite needles with austempering temperature for 0.6% Cu alloyed ductile iron have been investigated for three austempering temperatures of 270, 330, and 380 °C for 60 min at each temperature after austenitization at 850 °C for 120 min. The austempering temperature not only affects the morphology of bainitic ferrite but also that of retained austenite. There is an increase in the amount of retained austenite, its carbon content, and size of bainitic ferrite needles with the rise in austempering temperature. The influence of austempering time on the structure has been studied on the samples austempered at 330 °C. The increase in the austempering time increases the amount of retained austenite and its carbon content, which ultimately reaches a plateau.  相似文献   

14.
A novel thermomechanical processing was developed in the present study to produce a unique microstructure consisting of fine ferrite grains (i.e. ~4 μm on average) and low-temperature bainite in a relatively low-carbon steel with a modest hardenability. The thermomechanical route consisted of warm deformation of supercooled austenite followed by reheating in the ferrite region and then cooling to the bainitic transformation regime (i.e. 400–200 °C). The low-temperature bainite consisted of high dislocation density bainitic laths and very fine retained austenite films. This microstructure offered a high work hardening rate leading to a unique combination of ultimate tensile strength and elongation. This was due to the presence of ductile fine ferrite grains and hard low-temperature bainitic ferrite laths with retained austenite films. The microstructural characteristics of bainite were studied using optical microscopy in conjunction with scanning and transmission electron microscopy, electron backscatter diffraction and atom probe tomography techniques.  相似文献   

15.
1.IntroductionRecently,greatprogresshasbeenmadeintheresearchofthebainiticmicrostructuralcharacteristicsandtransformationbehaviorfor(ultra)lowcarbonsteel,especiallyoncontinuouslycoolingtransformatio.[ll.Itisknownthatthemorphologyofbainiticstructurefromcontinuouslycoolingtransformationisverydifferentfromthatfromisothermalheatt...t...t[2--v].Fromtheviewpointofindustrialapplicationthattheultralowcarbonbainiticsteelareproduc,gdbythermomechanicalcontrolledprocess(TMCP),thestudyofcontinuouscoolingt…  相似文献   

16.
高硅铸钢的强韧化机理   总被引:1,自引:0,他引:1  
陈祥  李言祥 《铸造》2006,55(12):1239-1243
采用X射线衍射,计算了高硅铸钢等温淬火热处理后的贝氏体铁素体含碳量,采用TEM分析了贝氏体铁素体中的错位,研究了贝氏体铁素体板条尺寸与高硅铸钢屈服强度、硬度间的关系。在此基础上分析了高硅铸钢的强化以及韧化机理,高硅铸钢的强化是固溶强化,位错强化和细晶强化综合作用的合理;而高硅铸钢的韧化是存在于贝氏体铁素体板条之间富碳的薄膜状残余奥氏体,细小的贝氏体铁素体板条共同作用的结果。合适的Si含量也是影响高硅铸钢韧性重要因素。  相似文献   

17.
贝氏体转变过程的阶段性及类调幅分解   总被引:6,自引:0,他引:6  
含有阻碍碳化物析出的合金元素的钢,贝氏体转变过程可以分为二个阶段:准贝氏体阶段和典型贝氏体阶段,准贝氏体阶段组织为贝氏体铁素体和残余奥氏体,典型贝氏体阶段组织为贝氏体铁素体和碳化物。用透射电子显微镜分析表明间隙型65Si2MnMo合金及置换型Ni28Mn合金贝氏体转变过程存在间隙原子(C)和置换原子(Ni)的类调幅分解现象。典型贝氏体转变过程中碳化物的析出源来自过饱和的贝氏体铁素体及残余奥氏体。  相似文献   

18.
以贝氏体钢为研究对象,设计了4种热处理工艺,研究了不同热处理工艺下试验钢的显微组织及疲劳裂纹扩展速率。结果表明,热轧态试验钢的微观组织以粒状贝氏体为主,其上分布有少量的板条贝氏体、马氏体和粗大块状M/A岛,残留奥氏体的体积分数为16.2%,但稳定性较差,裂纹能够直接穿过粗大的块状M/A岛继续扩展,疲劳裂纹扩展速率最快。经900 ℃奥氏体化+空冷后,显微组织以板条贝氏体和马氏体为主,M/A岛仍为粗大的块状,残留奥氏体含量减少至12.3%,疲劳裂纹扩展速率略有降低。经900 ℃奥氏体化+380 ℃盐浴等温30 min +空冷后,显微组织以细密、有序的板条贝氏体为主,残留奥氏体含量减少至10.2%,以薄膜状伴生在板条贝氏体间,板条状贝氏体及板条间的残留奥氏体薄膜会使裂纹端钝化、分叉、偏折,阻碍裂纹扩展的能力增强;经350 ℃回火240 min后,显微组织以马氏体和板条贝氏体为主,残留奥氏体含量比热轧态略微降低,为14.9%;而经450 ℃回火240 min后,显微组织以板条状贝氏体为主,其上分布有少量的马氏体,残留奥氏体体积分数减少至8.6%,也以薄膜状伴生在贝氏体板条间,同时有大量的碳化物析出,裂纹扩展速率最慢。  相似文献   

19.
低温回火态新型贝氏体钢的组织性能   总被引:2,自引:0,他引:2  
研究了回火工艺对新型低合金贝氏体钢组织和性能的影响,了解了该材料的回火特性.结果表明:正火和低于400℃回火后的组织由贝氏体、铁素体和残余奥氏体组成,具有较好的力学性能、回火抗性、良好的焊接性和机械加工性;在高于500℃回火后出现回火脆性,由新型贝氏体组织转变为典型贝氏体组织,其原因与回火过程中残余奥氏体和贝氏体铁素体的分解、碳化物析出有关.通过研究回火后的组织转变、残余奥氏体热稳定性、机械稳定性的变化,探讨了无碳贝氏体韧化及脆化机理,提出了适于该钢的最佳回火工艺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号