首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of uncrosslinked styrene-butadiene rubber (SBR) with a terpene tackifier resin or a naphthenic oil have been characterized, and their autohesion and cohesion determined using a T-peel geometry. SBR/oil blends are homogeneous at all proportions, while SBR/resin blends, based on DSC and DMA analysis, undergo bulk phase separation at about 50% resin. However, migration of tackifier to the surface region is proposed at much lower resin contents. Compositions diluted with oil have autohesion similar to the neat SBR. This is attributed to compensating effects; although oil hastens self-bond formation by increasing chain mobility, this is nearly equally balanced by more facile chain separation during bond rupture. In short, oil-diluted compositions are soft and weak. On the other hand, SBR compositions containing small amounts of resin have high autohesion. Resin-diluted specimens deform easily at low strain, just as those containing oil, but intertwined chains of the former have greater resistance to separation, due at least in part to higher glass transition temperatures. It is proposed that autohesion is further enhanced by migration of tackifier to the surface. This causes SBR/resin compositions to be both soft and strong-a necessary condition for high autohesion.  相似文献   

2.
陈桂英 《轮胎工业》1997,17(6):339-343
研究了用全SR制做7.50-16(人)拖拉机轮胎胎面。结果表明,胎面胶胶料生胶采用SBR1500/SBR1712(60/40)或SBR1500/BR/SBR1712(50/30/20)并用体系均可;炭黑选用炭黑N339最好;软化剂选用芳烃油,用量宜较高;增粘剂选用RX-80树脂。全SR胎面硫化胶的强撕性能、耐磨性能较好,成品轮胎性能符合国家标准,实际里程试验的花纹磨耗量低于现在生产轮胎。  相似文献   

3.
A polyester (PE) based on the glycolyzed products of PET was prepared and added in different concentrations to a series of SBR/PVC blends. The addition of the polyester showed that all properties of SBR/PVC blends were improved by incorporation of PE. Highest mechanical strength values were obtained at a polyester concentration of 7.5 phr. Thermal analysis as well as dynamic mechanical properties of SBR/PVC blends after the addition of 7.5 and 10 phr polyester indicated one single glass transition temperature. The dielectric losses (?") were analyzed in the frequency domains in the two terms of Fröhlich related to the Maxwell Wagner effect and the orientation of the aggregates caused by the movement of the main chain. The permittivity (?') values were found to increase by increasing the polyester content. This increase was followed by a decrease in the ?" up to a 7.5 phr polyester content after which no pronounced change was noticed.  相似文献   

4.
采用熔融共混法,制备高抗冲聚苯乙烯(HIPS)/废旧丁苯胶粉(废旧SBR胶粉)复合体系,通过在基体HIPS中填加芳烃油和苯乙烯-丁二烯-苯乙烯热塑性弹性体(SBS),研究了体系的力学性能及微观相态结构。结果表明,HIPS/废旧SBR胶粉复合体系中填充10份以上的芳烃油,可获得热塑性弹性体(TPE);在HIPS/废旧SBR胶粉/芳烃油体系中加入SBS进行增容,拉断伸长率有较大提高。拉伸断面形貌研究表明,基体中填充芳烃油和SBS,基体无明显塑性变形和撕裂带,断面平坦,体系具有良好的高弹形变回复能力。  相似文献   

5.
研究了纳米SiO2加入方式及用量对NR/SBR共混胶的正硫化时间、力学性能的影响,并研究了纳米SiO2改性前后共混胶的耐热分解性能、耐热空气老化性能及微观形态结构.结果表明:纳米SiO2的加入对共混胶的正硫化时间、力学性能及耐热稳定性能有较大影响;当纳米SiO2加入量为7%(质量分数)并采用NR/SBR共混均匀后先加入纳米SiO2,再加入小料、硫磺的方式制备NR/SBR共混胶时,纳米SiO2通过使NR/SBR共混胶的分散相细化并使共混胶的整体交联密度提高,有效地提高了NR/SBR共混胶的综合力学性能和耐热稳定性能,达到了对NR/SBR共混胶良好的补强改性效果.  相似文献   

6.
《国际聚合物材料杂志》2012,61(14):1130-1146
The present paper investigates the interaction of silica filler in uncompatibilized and compatibilized styrene butadiene rubber/nitrile rubber (SBR/NBR) blends of varying compositions. The use of a dynamic mechanical analyzer as a tool for confirming the compatibility by the addition of dichlorocarbene modified styrene butadiene rubber (DCSBR) in these blends has been described. The addition of silica in uncompatibilized as well as compatibilized blends has been found to be increasing the rheometric-processing characteristics such as maximum viscosity and rate of cure. The magnitude of these values has been found to be higher for compatibilized blends and for 50/50 composition. The optimum cure time has been found to be decreasing with silica loading regardless of the presence of the compatibilizer. The magnitude of optimum cure time has been found to be higher for uncompatibilized system and for the composition with higher SBR content. Enhancement in mechanical properties with the addition of silica has been observed for compatibilized blends, more intensely than uncompatibilized samples. A good correlation between mechanical properties and solvent sorption behavior has also been observed.  相似文献   

7.
The recycling or reuse of waste rubber by means of blending together with polymeric materials in addition of filler such as hybrid carbon black and silica (CB/Sil) to a polymer system can provides an opportunity to explore alternative product specifications. Therefore, in this work the investigation of recycled rubber blends based on styrene butadiene rubber/recycled acrylonitrile butadiene rubber (SBR/NBRr) blends reinforced with 50/0, 40/10, 30/20, 20/30, 40/10, 0/50 phr of carbon black/silica (CB/Sil) hybrid filler treated with and without silane coupling agent (Si69) were determined. Cure characteristics, tensile properties, and morphological behavior of selected SBR/NBRr blends at a fix 85/15 blend ratio were evaluated. Results showed that, cure time t90, minimum torque (ML), and maximum torque (MH) of CB/Sil hybrid fillers filled SBR/NBRr blends with and without Si69 increased as silica content increased. However, t90 and ML of SBR/NBRr blends with Si69 were lower than without Si69 except for (MH). The optimum scorch time (ts2) of SBR/NBRr blends with and without Si69 was obtained at 30/20 phr of CB/Sil hybrid filler. However, ts2 of SBR/NBRr blends with Si69 were longer than SBR/NBRr blends without Si69. The incorporation of Si69 has improved the tensile properties [(tensile strength, elongation at break (Eb), stress at 100% elongation (M100), and stress at 300% elongation (M300)] of CB/Sil hybrid fillers filled SBR/NBRr blends. These properties were influenced by the degree of crosslinked density as the silica content is increased. Scanning electron microscopy (SEM) of the tensile fracture surfaces indicated that, with the addition of Si69 improved the dispersion of hybrid fillers and NBRr in SBR/NBRr matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
The utilization of waste rubber powder in polymer matrices provides an attractive strategy for polymer waste disposal. Addition of recycled acrylonitrile‐butadiene rubber (NBRr) in rubber compounds gives economic (lowering the cost of rubber compounds) as well as processing advantages. In this study, the properties of styrene butadiene rubber (SBR)/NBRr blends with and without epoxidized natural rubber (ENR‐50) as a compatibilizer were determined. The results such as thermal gravimetric analysis (TGA), fatigue life, and natural weathering test of SBR/NBRr blends with and without ENR‐50 were carried out. Results showed that TG thermograms of SBR/NBRr blends with ENR‐50 show lower thermal stability compared blends without ENR‐50. The incorporation of ENR‐50 into SBR/NBRr blends has reduced char residue compared SBR/NBRr blends without ENR‐50. The incorporation of ENR‐50 in SBR/NBRr blends has increased the rigidity of the blends thus lowering the fatigue life. The increment in tensile properties retention of SBR/NBRr blends with ENR‐50 indicated the enhancement on weathering resistant. The surfaces of SBR/NBRr blends with ENR‐50 after 6 months exposure showed a minimal severity of crack compared with SBR/NBRr blends without ENR‐50. It revealed that the scale of cracks has reduced indicating well‐retaining interfacial adhesion between SBR and NBRr with the presence of ENR‐50 as a compatibilizer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The role of phenolic resin tackifier on autohesive tack of brominated isobutylene-co-p-methylstyrene (BIMS) rubber was studied by a 180° peel test with particular reference to aging. Phenolic resin showed very little effect on the unaged tack of BIMS rubber. The tack strength of the rubber/resin mixture marginally increased at 1 phr resin concentration, beyond which it decreased. Based on the data on the compression creep, maximum tensile stress, and viscoelastic properties of the rubber/resin mixtures, phenolic resin did not enhance the interfacial viscous flow behavior of the rubber/resin mixtures. The results from dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) confirmed the existence of a phase-separated morphology in the rubber/resin blends even at low resin concentration. Upon aging at 100°C for 36 h, the rubber/resin blend containing 1 phr of phenolic resin showed further increase in tack strength which was attributed to migration of the tackifier to the rubber surface and the changes in the compression creep, viscoelastic behavior, and maximum tensile stress of the rubber/resin mixtures. This is also a function of aging time. Surface energy analysis by contact angle measurement, Fourier Transform Infrared Spectroscopy (FT-IR/ATR) studies, and surface roughness measurement by atomic force microscopy (AFM) elucidate the enrichment of the phenolic resin on the rubber surface upon aging and the mechanism of enhanced tack strength.  相似文献   

10.
The effect of the addition of 5 and 10 phr of unsaturated polyester resin (UPE) on the compatibility and physicomechanical properties of styrene–butadiene (SBR) and acrylonitrile–butadiene (NBR) rubber blends was studied. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM), electrical, and ultrasonic techniques were used to determine the degree of the compatibility (DC). The results obtained revealed that, by the addition of 10 parts per hundred parts of rubber (phr) UPE as a compatibilizer for SBR/NBR blends, the degree of compatibility was greatly enhanced. The rheological and mechanical properties of the blends were also improved. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2314–2321, 2002  相似文献   

11.
Brominated isobutylene‐co‐p‐methylstyrene (BIMS) rubber has been blended with hydrocarbon resin tackifier and alkyl phenol formaldehyde resin tackifier, and the compatibility between the blend components has been systematically evaluated. Dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) studies show that BIMS rubber and hydrocarbon resin tackifier blends are compatible at all blend proportions studied. However, BIMS rubber and phenol formaldehyde resin blends exhibit very limited compatibility with each other and phase separation even at very low phenolic tackifier concentration. Morphological studies of the rubber–resin blends by scanning electron microscopy (SEM) corroborate well with the DMA and DSC results. From the DMA frequency sweep and temperature sweep studies, it is shown that the hydrocarbon resin tackifier acts as a diluent and causes a decrease in the storage modulus values (by reducing the entanglement and network density) in the rubbery plateau region. On the other hand, phenol formaldehyde resin behaves in the way similar to that of the reinforcing filler by increasing the storage modulus values (by increasing the entanglement and network density) in the rubbery plateau zone. The relaxation time estimated from the different zones of frequency sweep master curves provides information about the influence of the two tackifiers on the viscoelastic properties of the BIMS rubber in the respective zones. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
ABSTRACT

The effect of rubber content of poly (acrylonitrile butadiene styrene) (ABS) on compatibility and properties of polycarbonate (PC)/ABS blend systems has been investigated. The rheological, mechanical, physical, and thermal properties of PC/ABS blend systems containing ABS of different rubber content were studied. The reduced torque data on Torque Rheocord indicated improved processability of PC by addition of ABS, however, in ABS-rich compositions, higher rubber content reduces the extent of improvement. The tensile strength of PC decreased with addition of ABS to it but PC-rich compositions have a nearly additive response. The deviation form additivity for blends having higher rubber ABS was more pronounced. However, the impact strength of blends having higher rubber ABS were higher than other types and showed a positive deviation from additivity with variation in compositions. The blends containing ABS with lower rubber content showed a single glass-transition temperature (Tg) in differential scanning calorimetry studies (DSC) in the whole composition range indicating miscibility. Although two Tgs, one associated with PC phase and one with ABS phase, were observed for blends containing high rubber ABS, the shift in Tgs with respect to pure component values indicates partial miscibility. The decrease in the extent of shift with increase of ABS in these blends indicates undesirable phase separation due to poor adhesion of higher level of rubber content.  相似文献   

13.
张远喜 《弹性体》2013,23(4):47-51
研究了补强树脂种类及抗裂口树脂AD-1600用量对天然橡胶/丁苯橡胶(NR/SBR)并用胶性能的影响。结果表明,抗裂口树脂AD-1600、补强树脂OD-60均可提高NR/SBR硫化胶的拉伸强度、撕裂强度及耐磨耗性等性能;随AD-1600用量增加,拉伸强度和撕裂强度先增大后减小,DIN磨耗体积先减小后增大,呈单峰型变化规律,但各项性能达到最佳值时AD-1600用量不一致。  相似文献   

14.
采用带有酚醛基的反应性有机改性剂对纳米碳酸钙CCR进行改性制得M-CCR,并制备了NR/BR/SBR/CCR和NR/BR/SBR/M-CCR复合材料,研究了两种复合材料的微观形态以及力学性能和加工性能。结果表明,M-CCR在并用胶中的分散性优于CCR,对并用胶力学性能的提高更显著;两种填料都能改善并用胶的加工性能,并且不影响并用胶的抗湿滑性和滚动阻力。  相似文献   

15.
The application of silicone polymers as additives in commercial polymers for improving their surface properties is an attractive method. Use of reclaimed silicone rubber for blending with commercial organic polymers is an equally attractive possibility. Ultrasonically devulcanized silicone rubber was mixed with virgin and ultrasonically devulcanized styrene–butadiene rubber (SBR). The surface and bulk mechanical properties and curing behavior of the blends of SBR with ultrasonically devulcanized silicone rubber were investigated. Contact angles of these blends were measured, and the concentration of silicone rubber on the surface was calculated. It was shown that the soluble part of devulcanized silicone rubber migrates to the surface. The addition of 5 phr of devulcanized silicone rubber led to the formation of a continuous surface layer containing 100% silicone rubber. In general, the mechanical properties of the blends remain intact and, in some cases, are even better than those of SBR. Curing behavior shows that the blends have the similar cure kinetics as virgin or devulcanized SBR, but a lower final torque. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2691–2696, 1998  相似文献   

16.
The effects of styrene butadiene rubber/virgin acrylonitrile butadiene rubber (SBR/NBRv) blends and styrene butadiene rubber/recycled acrylonitrile butadiene rubber (SBR/NBRr) blends on properties such Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) were carried out. Results indicated that, based on intensity of amine peak from FTIR at 85/15 blend ratio (R15) revealed optimum formation of crosslink between SBR and NBR either using virgin or NBRr. TG thermograms of SBR/NBRv blends of all ratios showed better onset thermal stability than SBR/NBRr blends. The change in the horizontal baseline from high to low energy level occurred in virgin NBR blends because the amount of reactive sites available in virgin NBR is higher compared to NBRr. Meanwhile NBRr blends showed Tc because the amount of crosslink occurred in these blends were slightly lower than NBRv blends. Up to 25 phr of NBRr, the tensile strength and elongation at break (Eb) retention of SBR/NBRv blends was better than SBR/NBRr blends after 6 months' weathering test except for M100. The scanning electron microscopy on the surface of both blends after 6 months exposure indicated that the severity of the crack was minimal for SBR/NBRr blends compared to SBR/NBRv particularly at 50/50 blend ratio designated the SBR/NBRr blends that contained more NBRr particles could reduce the degradation towards natural weathering.  相似文献   

17.
王亚珍  张辉  李曙光  张丽叶 《塑料》2004,33(1):20-23
辐射交联LDPE/EVA混合体系泡沫片材表观光滑、柔软,手感好,表观密度较小,材料具有优异的力学性能,较高的拉伸强度、断裂伸长率和撕裂强度。进一步研究了产生宏观性能差异的原因是辐射交联LDPE/EVA混合体系泡沫片材制备成型工艺的特殊性,体系的交联度对制品性能影响很大。通过凝胶分析知道交联度与辐照剂量、LDPE树脂的物理性能和EVA树脂在混合体系的含量有关。此外,LDPE树脂的物理性能和EVA在混合体系的含量对材料宏观性能也有影响。  相似文献   

18.
The viscoelastic behavior of brominated isobutylene‐co‐p‐methylstyrene (BIMS) rubber/hydrocarbon resin blends and BIMS/phenol formaldehyde resin blends was studied with the use of a rubber process analyzer. Dynamic mechanical analysis and scanning electron microscopy were used to evaluate the compatibility between the BIMS/tackifier blends. Strain sweep tests at temperature below the softening point of the tackifiers showed the formation of resin–resin networks in the incompatible BIMS/phenolic resin blends. However, resin–resin network was not prominent in the case of the compatible BIMS/hydrocarbon resin blends. Frequency sweep tests were performed at the strain amplitude within the linear region at several temperatures and the variations of shear storage modulus, G′ and complex viscosity, η* against frequency were recorded. The tackifying resins modified the viscoelastic properties of the BIMS rubber by reducing the storage modulus at lower frequency and by increasing the storage modulus at higher frequencies. However, this action was found to be highly dependent on (a) rubber‐tackifier compatibility, (b) blend proportions, and (c) test temperature. Furthermore, stress relaxation measurements of the BIMS/tackifier blends at temperature below the softening point of the tackifiers showed longer period of relaxation for the incompatible BIMS/phenolic resin blends. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

19.
Migration behaviors of antiozonants in carbon black‐filled rubber vulcanizates with different rubber compositions of natural rubber (NR), styrene–butadiene rubber (SBR), and butadiene rubber (BR) were studied at constant temperatures of 40–100°C and outdoors. Three single rubber‐based vulcanizates, three biblends, and three triblends were used. N‐Phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD) and N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (HPPD) were employed as antiozonants. Migration rates of the antiozonants became faster with increasing the temperature. The order of the migration rates in the single rubber‐based vulcanizates was BR > NR > SBR. The migration rates in the vulcanizates containing SBR, on the whole, increased with decreasing the SBR content, while those in the vulcanizates containing BR decreased with decreasing the BR content. Difference in the migration behaviors of the antiozonants depending on the rubber composition was explained both by the intermolecular interactions of the antiozonants with the matrix and by interface formed between dissimilar rubbers in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 237–242, 2001  相似文献   

20.
比较了直接添加LDPE、SBR改性沥青与LDPE/SBR熔融共混物改性沥青的高温贮存稳定性,并利用光学显微镜观察了各种改性沥青在高温下随时间的变化。结果表明:直接添加LDPE、SBR所得到的改性沥青,其高温贮存稳定性很差。而采用预先制备含有部分共聚物的LDPE/SBR共混物所得到的改性沥青能够在高温下稳定贮存。同时,相形态观察也表明,这种共混物改性沥青的高温相形态也不随时间变化,这一点与稳定性测试结果想吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号