首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
利用化学氧化法原位聚合制备了聚苯胺(PANI)/氧化石墨烯(GO)接枝复合材料。透射电子显微镜表明,PANI纳米颗粒均匀地分布在GO的表面;通过UV-vis光谱证实了GO和PANI之间存在着强烈的相互作用;充放电测试表明,PANI/GO纳米复合材料具有良好的电荷储存特性,最高比电容可达575 F/g。由于与GO之间的化学结合作用,PANI的充放电循环稳定性得到明显提高。  相似文献   

2.
首次以三步法制备了聚苯胺一石墨烯-Co3O4PANI—RGO-Co3O4纳米复合材料。利用F]'-IR,XRD,XPS和TEM对所制备的纳米复合材料进行表征,结果表明:PANI—RGO-Co3O4纳米复合材料中氧化石墨(GO)的含氧官能团数量大幅降低,GO已被还原成石墨烯(RGO);PANI和RGO之间具有较强的相互作用,且形成的-Co3O4纳米粒子分布在PANI—RGO表面,其粒径在5-15nm之间,该纳米复合材料有望在超级电容器材料、电极材料和吸波材料等领域有广泛的应用前景。  相似文献   

3.
《炭素》2017,(4)
通过对石墨烯(GN)制备、结构改性及与聚苯胺(PANI)、银粒子(Ag)的复合,设计了制备GN/PANI/Ag新型电极复合材料的工艺路线。首先利用Hummers氧化还原法将石墨氧化成氧化石墨烯,利用硼氢化钠将氧化石墨烯还原成石墨烯,将石墨烯与聚苯胺、银粒子反应,最后制得了GN/PANI/Ag复合材料。利用扫描电子显微镜(SEM),透射电子显微镜(TEM),热重分析(TG)和电导率测试对GN和GN/PANI/Ag的形貌,热稳定性和电化学性能进行了分析研究。结果表明,聚苯胺类衍生物、石墨烯以及银粒子三相在整个复合材料中共存,材料的复合使体系热稳定性和电化学性能得到提高。  相似文献   

4.
采用脉冲电沉积一步合成得到石墨烯/聚苯胺(PANI)复合材料,通过SEM和XRD对材料的形貌和结构进行了表征,复合材料中聚苯胺为翠绿亚胺态,呈纤维状形貌。将所得石墨烯/PANI复合材料用作超级电容器电极进行电化学性能测试,比纯聚苯胺表现出更优异的超电容性能。电流密度为0.5A·g~(-1)时,石墨烯/PANI的比容量可达703F·g~(-1),且具有良好的倍率性能。  相似文献   

5.
利用苯胺与石墨烯(GNP)间形成的电子相互作用,首先将苯胺吸附到未经过任何化学衍生化的石墨烯表面,然后在GNP表面进行苯胺的氧化聚合,合成石墨烯/聚苯胺(GNP/PANI)纳米复合材料,并将其作为填料加入水性丙烯酸氨基烤漆中.通过透射电镜(TEM)、紫外-可见光谱(UV-Vis)、红外光谱(FT-IR)、电化学活性分析...  相似文献   

6.
采用原位聚合法制备了聚苯胺质量分数为20% 的聚苯胺改性蒙脱土,并以此作为增强剂利用机械混炼法制备了聚苯胺改性蒙脱土( PANI - MMT) /天然橡胶( NR) 纳米复合材料。使用X 射线衍射仪、傅里叶变换红外光谱仪及扫描电镜等对PANI - MMT 和PANI - MMT/NR 复合材料的结构进行了表征,并考察了PANI - MMT/NR 复合材料的力学性能。结果表明,PANI - MMT/NR 复合材料形成了插层型纳米结构; 与普通的有机蒙脱土/NR 复合材料相比,PANI - MMT/NR 复合材料的力学性能明显提高,PANI - MMT 添加质量为20 份时其力学性能达到最好,并超过了添加40 份炭黑N 660 的NR 的力学性能。  相似文献   

7.
本文采用改性Hummers法制备氧化石墨烯,热还原得到石墨烯,采用双乳液方法制备石墨烯/聚苯胺复合材料,利用傅里叶变换红外(FTIR)光谱、XRD衍射仪、XPS光电子能谱,SEM、TEM对石墨烯及石墨烯聚苯胺复合材料进行了结构和形貌表征。结果表明热还原得到的石墨烯具有良好的透光率,呈现均匀的皱褶层状结构,具有良好的片层结构。石墨烯与聚苯胺之间发生了化学键合,XPS显示聚苯胺掺杂度不高,但加入石墨烯后电导率明显增加,石墨烯与聚苯胺之间发生了协同作用。CV曲线表明双乳液制备的聚苯胺/石墨烯复合材料电容有所下降。  相似文献   

8.
乔伟强  刘丹 《广州化工》2011,(24):90-93
采用了一种简单有效地方法制备了高电活性的石墨烯/聚苯胺复合材料。首先,将苯胺在氧化石墨烯(GO)的水性分散液中氧化聚合,制备了氧化石墨烯/聚苯胺(GO/PANI),再将GO/PANI与水合肼反应,制得还原-氧化石墨烯/聚苯胺(R(GO/PANI))。利用透射电子显微镜(TEM),热失重分析(TGA)和循环伏安法(CV)对GO/PANI和R(GO/PANI的形貌,热稳定性和电化学性能进行了分析研究。结果表明,GO表面存PANI,且R(GO/PANI)的热稳定性和电活性都明显高于GO/PANI。  相似文献   

9.
PA6/聚苯胺复合材料的研制   总被引:1,自引:1,他引:0  
通过共混、原位聚合方法制备尼龙(PA)6/聚苯胺(PANI)复合材料,并利用不同的改性剂改性PA6/PANI复合材料.结果表明,改性复合材料中PANI的微观结构为纳米结构.当采用复合改性剂十六烷基三甲基溴化胺(CTAB)、1,5-萘二磺酸(1,5-NDA)改性PA6/PANI复合材料时,PANI的分散性最好,且具有较均一的纳米球结构.与未改性PA6/PANI复合材料相比,CTAB-1,5-NDA改性复合材料的电导率有显著提高,当PANI质量分数分别为20%、40%时,复合材料的室温电导率分别可达4.64×10-2S/cm和0.13 S/cm,该复合材料在电极材料方面具有广阔的开发和应用前景.  相似文献   

10.
采用一步水热法合成人工纤蛇纹石-硅酸镁纳米管,再进一步通过原位氧化聚合法在硅酸镁纳米管表面负载聚苯胺(PANI)纳米纤维,制得聚苯胺-硅酸镁(PANI/MSNTs)纳米复合材料。利用傅里叶红外变换光谱仪(FTIR),热重分析(TGA)、X射线衍射(XRD)等对纳米复合材料进行表征。结果表明:PANI/MSNTs纳米复合材料具有较高的胺基官能团密度和良好的热稳定性能,可作为固体胺吸附剂用于大气中CO2的吸附分离。  相似文献   

11.
Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g?1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g?1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm?3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.  相似文献   

12.
The nanocomposites of low‐density polyethylene contain graphene (LDPE/Gr) and low‐density polyethylene contains carbon‐nanotubes (LDPE/CNTs) with different Gr loadings (0.5, 1, and 3 wt%) were formulated with a melt‐mixing method. The distribution of Grs in LDPE was detected by scanning electron microscopy. In this study, morphological, electrical, thermal, tensile, and rheological properties of nanocomposites were comparatively investigated. The outcomes were reviewed and it was recognized that LDPE/Gr nanocomposites reveal superior properties than LDPE/CNTs nanocomposites at the same loadings. The superior performance of LDPE/Gr nanocomposites attributes to the large aspect ratio of Gr and its two dimensional flat surfaces which effect in increasing physical interlinking with LDPE chains and expanded the interface zone at filler–LDPE interface. It was also identified that the achieved results for LDPE/CNT nanocomposites, which has a compact surface area and linkage with LDPE, are less noticeable than similar Gr compounds due to higher interfacial interactions between Gr and LDPE. The thermomechanical results of LDPE/Gr nanocomposites have been studied and the influence of nanoscaled strengthening in the thermoplastic matrix has been investigated. The existence of Gr limits the flexibility of LDPE chains, increases the rigidity and the strength of the LDPE‐nanocomposites. This study compares how a flat or roll structure of carbon nano‐structure additive (Grs vs. CNTs) can change the various properties of LDPE nanocomposites. J. VINYL ADDIT. TECHNOL., 25:35–40, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
In this theoretical research work, the fracture characteristics of graphene-modified polymer nanocomposites were studied. A three-dimensional representative volume element-based multiscale model was developed in a finite element environment. Graphene sheets were modeled in an atomistic state, whereas the polymer matrix was modeled as a continuum. Van der Waals interactions between the matrix and graphene sheets were simulated employing truss elements. Fracture characteristics of graphene/polymer nanocomposites were investigated in conjunction with the virtual crack closure technique. The results demonstrate that fracture characteristics in terms of the strain energy release rate were affected for a crack lying in a polymer reinforced with graphene. A shielding effect from the crack driving forces is considered to be the reason for enhanced fracture resistance in graphene-modified polymer nanocomposites.  相似文献   

14.
In this work, multi-walled carbon nanotube (MWNT) bonded graphene (M-GR) composites were prepared using the chemical reduction of graphite oxide (GO) and acid treated MWNTs with different ratios. The M-GR/polyaniline (PANI) nanocomposites (M-GR/PANI) were prepared using oxidation polymerization. The effect of the M-GR ratio on the electrochemical performances of the M-GR/PANI was investigated. It was found that the substrate 2D graphene was coated with 1D MWNTs by chemical reduction and the M-GR was further coated with PANI, leading to increased electrical properties by the π–π interaction between the M-GR and PANI. In addition, the electrochemical performances, such as the current density, charge–discharge, and specific capacitance of the M-GR/PANI were higher than those of graphene/PANI and the highest specific capacitance (1118 F/g) of the composites was obtained at a scan rate of 0.1 A/g for the PANI containing a 0.5 M-GR ratio compared to 191 F/g for the graphene/PANI. The dispersion of the MWNTs onto the graphene surface and the ratio of M-GR had a pronounced effect on the electrochemical performance of the PANI-based composites, which was attributed to the highly conductive pathway created by the M-GR incorporated in the PANI-based composites and the synergistic effect between M-GR and PANI.  相似文献   

15.
Polyaniline/graphene (PANI/GN) nanocomposites were fabricated via in‐situ oxidative polymerization of aniline in the presence of cetyltrimethylammonium bromide (CTAB) modified graphene (CGN) in 1M hydrochloric acid (HCl) solution. The morphology and structure of PANI/GN samples were investigated by Fourier transform infrared spectrum, X‐ray diffraction, ultraviolet and visible spectrum, thermogravimetric analysis, field‐emission scanning microscope (FE‐SEM), and transmitting electron microscopy (TEM). The conductivities of the PANI/GN nanocomposites were measured using four‐probe electrical conductivity measurement. The results indicated that the GN sheets disperse into the form of monolayer or stack few layers in PANI matrix. The GN sheets serve as a support material for PANI particles and the structure of GN covered with PANI nanoparticles were confirmed by FE‐SEM and TEM. The electrical conductivities of the PANI/GN samples have been improved compared with pure PANI prepared in the similar condition. POLYM. COMPOS., 36:1767–1774, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
《Ceramics International》2016,42(14):15235-15241
Graphene incorporated WO3 nanocomposites with different graphene contents were synthesized in the present study using the hydrothermal approach. The results showed nano-structured WO3 sticks were uniformly dispersed within the graphene sheets. The incorporation of the graphene significantly decreased the band gap energy of the pristine WO3. Due to this reason, the prepared WO3/Graphene nanocomposites had much higher photodegradation efficiency to the methylene blue dye than the pristine WO3. More importantly, it was found that the prepared nanocomposites could initiate dye degradation with a very desirable efficiency under visible light, and the methylene blue molecules could be converted to some small molecules during this process. This study provides an effective photocatalyst which can initiate dyestuff degradation in the wastewater under visible light.  相似文献   

17.
Polyaniline (PANI) is a potential candidate for n-type thermoelectric (TE) materials owing to its intrinsic electrical conductivity, low thermal conductivity, and facile synthesis techniques. However, its low Seebeck coefficient and power factor have limited its widespread usage. In this study, nitrogen-doped, and sulfur-nitrogen co-doped reduced graphene oxide (rGO) were used for tuning the TE properties of PANI. Doped rGO and PANI/doped-rGO nanocomposites were prepared via hydrothermal technique and chemical oxidative polymerization respectively and thereafter characterized. The TE properties of the nanocomposites were also studied and an optimized Seebeck coefficient, power factor and zT value of −1.75 mV K−1, 95 μW m−1 K−2 and 0.06, respectively were reported for the PANI nanocomposite containing 1 wt% sulfur-nitrogen co-doped rGO. These results suggest that PANI/heteroatom-doped rGO can serve as promising candidates for n-type based TE applications.  相似文献   

18.
Graphene nanosheets are prepared by solution‐phase exfoliation of graphite and successfully incorporated with polyimide to obtain polyimide/graphene (DABPI/G) nanocomposites via in situ polymerization. Compared with those of pure DABPI, the DABPI/G nanocomposites exhibit better barrier and thermal properties. The oxygen and water vapor transmission rates of the DABPI/G (0.5 wt%) nanocomposite are 0.69 cm3 m?2 d?1 and 0.44 g m?2 d?1, respectively, which are 92 and 85% lower than those of pure DABPI. Meanwhile, the DABPI/G (0.5 wt%) nanocomposite exhibits excellent thermal stability with a Td5% of 578 °C and a coefficient of thermal expansion of ?0.19 ppm K?1. The excellent barrier and thermal properties of DABPI/G nanocomposites are mainly attributed to the fine dispersion and orientation of the graphene nanosheets, increased crystallinity, and low free volume of the DABPI matrix. These are the result of the “dual‐plane” structure effect, which is the synergistic orientation effect between the rigid planar molecular chains of DABPI and the nanosheets of graphene.  相似文献   

19.
石墨烯是近年被发现和合成的一种新型二维碳质纳米材料.由于其独特的结构和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点.综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望.  相似文献   

20.
石墨烯/聚苯胺复合阳极的制备及在MFC中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学氧化还原法制备高纯度石墨烯(GR),利用电化学修饰法得到石墨烯/聚苯胺(GR/PANI)膜阳极,采用红外光谱(FI-IR)、X射线衍射(XRD)、场发射扫描电镜(FESEM)对所制备复合电极进行了表征,采用循环伏安法(CV)、交流阻抗法(EIS)考察了复合电极的电化学性能。将GR/PANI膜阳极应用于固定床微生物燃料电池(MFC),考察了电池的产电性能。均匀地附着在石墨烯表面,GR/PANI膜电极具有良好可逆性,其电阻小、导电性良好。GR/PANI膜阳极应用于MFC,最大功率密度和开路电压分别为230.2 mW·m-2和834.6 mV,比未修饰阳极的最大功率密度和开路电压分别提高了110.6%和34.8%,GR/PANI膜阳极的表观内阻也由未修饰阳极的843.2Ω降低为469.4 Ω,且电池启动时间大大缩短,产电稳定性增强。结果表明,GR/PANI复合物是一种优良的电极材料,GR/PANI膜阳极MFC具有良好的产电性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号