首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the present study, the effect of laser surface melting (LSM) on intergranular corrosion behaviour of aged austenitic stainless steels (UNS S30400, S31603, S32100 and S34700) and aged duplex stainless steels (UNS S31803 and S32950) were investigated. LSM of the aged stainless steels was carried out using a 2.5 kW CW Nd:YAG laser. The microstructure of the aged stainless steels after LSM depends on their compositions. After LSM, the aged austenitic stainless steels mainly contain austenite (γ) with some ferrite (δ) as the minor phase, but the carbide phases are completely eliminated. For the aged duplex stainless steels after LSM, δ becomes the major phase and the δ/γ phase balance is disturbed, whereas the sigma (σ) phase is eliminated. The degree of sensitization (DOS) and corrosion morphology of the aged stainless steels before and after LSM were determined by the double loop electrochemical potentiokinetic reactivation (DL-EPR) using a potentiostat and SEM observation, respectively. Desensitization of the aged stainless steels has been successfully achieved by LSM and their intergranular corrosion resistance is found to be significantly enhanced as reflected by the decrease in DOS due to dissolution of the carbides or σ phase, which reduced Cr depletion or the possibility of solute segregation at the grain or phase boundaries, despite the presence of δ and disturbance of δ/γ phase balance.  相似文献   

2.
Abstract

A practical repairing technique using laser surface melting (LSM) was developed to remove the stress corrosion cracking (SCC) in overlaying of Inconel 182. Influence of microstructure of different heat treatments performed during repairing process on intergranular cracking/intergranular stress corrosion cracking (IGC/IGSCC) susceptibility was discussed. The intergranular precipitate was identified as M23 C6 by TEM. The microstructure with no intergranular precipitate and refiner sub-grain after LSM process shows excellent IGC/IGSCC resistance. The stress relief heat treatment induced severe microstructure of high IGC/IGSCC susceptibility, owing to the semicontinuous intergranular precipitation. The influence of Nb/C ratio on IGC/IGSCC susceptibility of three nickel based superalloys after LSM process was also investigated. For both of the Inconel 182 alloys with different Nb content, the microstructure after LSM process and following sensitisation treatment showed precipitation free grain boundary. The results of corrosion tests also indicated that the material with higher Nb/C ratio showed higher IGC/IGSCC resistance after LSM process and following sensitisation treatment.  相似文献   

3.
Susceptibility to intergranular corrosion (IGC) and intergranular stress corrosion cracking (IGSCC) due to sensitization is one of the major problems associated with austenitic stainless steels. Thermal exposures encountered during fabrication (welding, hot working, etc.) and elevated temperature service may lead to sensitization of components of austenitic stainless steels. Laser surface melting (LSM) is an in-situ method to increase the life of a sensitized component by modifying the surface microstructure without affecting the bulk properties. In this paper, the results obtained in the attempt to improve IGC resistance of coldworked and sensitized 316 SS by LSM are presented. Type 316 SS specimens cold worked to various degrees ranging from 5 to 25% reduction in thickness and sensitized to different degrees by exposing at 898 K for different durations were laser surface melted using continuous wave (cw) CO2 laser. ASTM standard A262 practice A, optical metallography, and ASTM standard G108 were used to characterize the specimens before and after LSM. Influence of prior deformation on the desensitization behavior was evaluated for the laser melting conditions adopted during the investigation. Complete dissolution of M23C6 due to laser melting and suppression of re-precipitation due to rapid quenching result in a desensitized homogenous microstructure, which is immune to IGC. Under identical laser melting conditions, the extent of desensitization decreases with an increase in the degree of cold work, and hence, higher power levels and an extended interaction time must be adopted to homogenize the sensitized microstructure with prior cold work.  相似文献   

4.
An AZ91D magnesium alloy was treated using duplex techniques of laser surface melting (LSM) and plasma electrolytic oxidation (PEO). The microstructure, composition and corrosion behavior of the laser melted surface, PEO coatings, LSM–PEO duplex coatings as well as the as-received specimen were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electrochemical corrosion tests, respectively. Especially, the effect of LSM pre-treatment on the microstructure, composition and corrosion resistance of the PEO coatings was investigated. Results showed that the corrosion resistance of AZ91D alloy was marginally improved by LSM due to the refinement of grains, redistribution of β-phase (Mg17Al12) and increase of Al on the surface. Both the PEO and duplex (LSM–PEO) coatings improved significantly the corrosion resistance of the AZ91D alloys, while the duplex (LSM–PEO) coating exhibited better corrosion resistance compared with the PEO coating.  相似文献   

5.
Two types of composites were prepared with Al−4.5Cu alloy as a matrix using stir casting method. One was reinforced with 10 wt.% of SiC and 2 wt.% of MoS2. The other was reinforced with 10 wt.% of SiC and 4 wt.% of MoS2. Their surfaces were remelted using a CO2 laser beam with an objective to study the influence of laser surface melting (LSM). The topography, microhardness, corrosion resistance and wear resistance of the laser melted surfaces were studied. Overall surface integrity after LSM was compared with as-cast surface. LSM enhanced the microhardness and wear resistance of the surface in each case. Porosity of the laser melted surface was low and corrosion resistance was high. Thus, LSM can be conveniently applied to enhancing the surface integrity of the aluminium composites. However, there is an optimum laser specific energy, around 38 J/m2 in this study, for obtaining the best surface integrity.  相似文献   

6.
Different laser energy densities were utilized to treat AISI 304 stainless steel via Nd:YAG pulsed laser surface melting (LSM). The surface composition and microstructure of the stainless steel were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM). In particular, the corrosion behaviors of the stainless steel surface without and with LSM were evaluated by the electrochemical polarization measurement in 3.5 wt.% NaCl aqueous solution at room temperature. The results showed that the stainless steel surface without LSM suffered severe localized pitting under the testing conditions. A thin surface oxide protective layer was produced on the stainless steel surface with LSM, which considerably improved the corrosion resistance properties of the stainless steel. The height differences of the corrosion regions on the stainless steel surface with LSM were measured to establish more corrosion resistant region, using scanning confocal laser microscopy. The underlying corrosion mechanism of the stainless steel with LSM was revealed.  相似文献   

7.
Ni-base Alloy 600 has been widely used as a steam generator (S/G) tubing material in nuclear power plants because of its good mechanical and corrosion properties at high temperatures. However, degradations of S/G tubes due to intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) during normal operation have been frequently reported. In particular, Alloy 600 can be very susceptible to IGA/IGSCC in some sulfur-bearing environments by sensitization. In this paper, the beneficial effects of laser surface melting (LSM) on intergranular corrosion of the sensitized Alloy 600 is presented from the results of the double loop electrochemical potentiokinetic reactivation (DL-EPR) test. The DL-EPR test was performed in de-aerated 0.01 M H2SO4+20 ppm KSCN at a scan rate of 0.5 m V/sec at room temperature. The degree of sensitization (DOS) of the sensitized Alloy 600 measured from the DL-EPR test was considerably reduced by LSM. The sensitized Alloy 600 after LSM also exhibited a relatively low DOS, compared with that of the sensitized but not laser treated Alloy 600. From the microscopic observation, it was found that the microstructural changes brought about by the LSM process, especially changes in the precipitation behavior of grain boundary Cr-rich carbides, caused the improvement of resistance to intergranular corrosion of the laser treated Alloy 600. The resistance to IGSCC of the laser treated Alloy 600 in sulfur-bearing environments was also discussed from the results of measured DOS and microstructural examination. This article based on a presentation made in the symposium “The 4th International Conference on Fracture and Strength of Solid”, held at POSTECH, Pohang, Korea, August 16–18 under the auspices of Far East and Ocean Fracture Society (FEOFS),et al.  相似文献   

8.
Excimer laser surface melting (LSM) of the die cast AZ91D alloy has been investigated in terms of microstructure and corrosion behaviour. Excimer LSM of the alloy resulted in a highly homogeneous and refined melted microstructure, which improved the corrosion resistance of the alloy. The latter was associated with the large dissolution of intermetallic phases and the enrichment of aluminium within the melted layer. An increased number of laser pulses resulted in thicker melted layers, but also in enhanced porosity and the formation of micro-cracks at the overlapping area. Both factors diminished the corrosion resistance of the laser-treated alloy.  相似文献   

9.
Surface modification by excimer laser surface melting (LSM) has been performed with the aim to improve the corrosion resistance of the AA2050-T8 alloy. LSM produced melted surfaces, largely free of precipitates, with both microstructure and corrosion behaviour depending upon the number of laser pulses employed. Increased number of laser pulses resulted in thicker melted layers, but also in greater trapped porosity and formation of micro-cracks at the overlapping area. Nevertheless, the LSM-treated specimens exhibited enhanced corrosion resistance compared to the untreated alloy, which was associated with the formation of a relatively uniform melted layer and a diminished presence of precipitates.  相似文献   

10.
Thermodynamic and kinetic modeling were conducted to simulate Cr depletion profiles near grain boundaries in Inconel 182 during heat treatments and laser surface melting (LSM) using Thermo-Calc and DICTRA code. The effect of Nb addition was also considered in the modeling. Based on the good agreement with Cr concentration distributions during the heat treatments measured experimentally, Cr depletion profiles adjacent to grain boundaries during the heat treatments and the LSM process were modeled. The Cr depletion profiles were evaluated using the Cr depletion area below the critical Cr concentration for intergranular cracking/intergranular stress corrosion cracking (IGC/IGSCC) susceptibility (12 mass%). Compared with the result of the Streicher test, the calculated Cr depletion areas showed good agreement with IGC/IGSCC susceptibilities. The sample after stress relief (SR) treatment had the largest Cr depletion area and showed the poorest IGC/IGSCC resistance. Cr depletion showed some recovery during subsequent low temperature sensitization (LTS). The sample after the LSM process had the smallest Cr depletion area and showed the best IGC/IGSCC resistance.  相似文献   

11.
Three high-speed steels (HSSs) M2, ASP23, ASP30 were surface-melted by a CW 2.5-kW Nd:YAG laser. The microstructure of the laser surface-melted HSSs was investigated by optical microscopy, scanning electron microscopy and X-ray diffractometry, and the hardness profiles of the laser surface-melted layers were determined by a Vickers hardness tester. The corrosion behavior in 0.6 M NaCl and 0.5 M NaHCO3 solutions at 25 °C was studied by potentiodynamic polarization technique. Metallographical as well as electrochemical corrosion studies illustrated the beneficial effects of laser surface melting (LSM) in refining the microstructure and in enhancing the corrosion resistance of the HSSs. The large carbide particles of annealed HSSs were dissolved after LSM and ultrafine dendrites of austenite and martensite with submicroscopic carbide precipitation were formed in the melt zones of the laser surface-melted HSSs. LSM of M2, ASP23 and ASP30 produced surface layers of hardness 615, 580 and 665 Hv, respectively. The hardness of the laser surface-melted ASP23 and ASP30 reached about 0.75 to 0.80 that of the conventionally hardened ones, while the hardness of laser-melted M2 was comparable to that of conventionally hardened M2. The corrosion resistance of all laser surface-melted HSSs in both solutions was significantly improved, as evidenced by a noble shift of the corrosion potential and a reduction in the corrosion current density. Among the HSSs, laser surface-melted ASP23 possessed the highest corrosion resistance in both solutions. The presence of cobalt in ASP30 has no beneficial effect on enhancing its corrosion resistance. The enhancement in the corrosion resistance of the laser surface-melted HSSs is attributable to the combined effects of dissociation and refinement of large carbides and the increase of the passivating alloying elements such as Cr, Mo and W in solid solution.  相似文献   

12.
Tian He  Qun lv  Tao Liu 《Corrosion Science》2009,51(8):1757-166
“Underwater super-hydrophobic” surface applied in the corrosion protection was prepared by melting myristic acid (CH3(CH2)12COOH) adsorbed onto the anodized aluminum. The static contact angle for seawater on the surface was measured to be 154°. The surface structure and composition were then characterized by means of scanning electron microscopy (SEM) with energy dispersive X-ray spectrum (EDS) and atomic force microscope (AFM). The electrochemical measurements showed that the super-hydrophobic surface significantly improved the corrosion resistance of aluminum in sterile seawater. In addition, the mechanism of the underwater super-hydrophobic surface applied in the corrosion resistance was discussed using a schematic.  相似文献   

13.
The correlation of localized corrosion behavior and microstructure of reinforcement steel in simulated concrete pore solutions was investigated. The SEM/EDS analysis showed that most of ferrite, minor amount of pearlite and some MnS inclusions existed on the steel surface. The SKPFM results indicated a higher corrosion tendency at the ferrite grain boundaries, pearlite grains and MnS inclusions. The EIS and electrochemical polarization measurements demonstrated the influence of pH and chloride concentration on the corrosion behavior. In situ optical observations and AFM images revealed a detail of the localized corrosion behavior, which was in good agreement with the results from the other measurements.  相似文献   

14.
Abstract

Various protective methods may be used to improve the corrosion resistance of steel, and the application of coatings of zinc and its alloys is one of them. The efficiency of zinc in corrosion protection is due to its behaviour as a sacrificial anode. To enhance the corrosion protection, zinc has been alloyed with more noble metals such as cobalt, nickel and iron. In this work zinc-cobalt alloys were electrodeposited onto steel from an alkaline electrolyte. The investigation was carried out on electrodeposits with low and high cobalt contents. An in situ study was performed using a TEM equipped with a hot stage to relate the heat treatment with changes in structure and, consequently, corrosion behaviour. The images of the specimens as deposited and after heat treatment showed the presence of a phase that was identified as Co5Zn21. However only the diffraction pattern of the heat treated specimen fitted the strongest lines for this compound. The corrosion tests showed differences in the corrosion resistance before and after heat treatment, for alloys with low and high cobalt. The heat treated specimens displayed more active behaviour.  相似文献   

15.
ABSTRACT

Carbon steel (C-steel; E24 and S235 grades) and stainless steel (316L) electrodes were corroded in situ in Opalinus clay under anoxic conditions in a vertical descending borehole. The electrodes were exposed at ambient temperature for two years, and then at 85°C for five years. In situ electrochemical impedance spectroscopy showed that the instantaneous corrosion rate of C-steel decreased over time down to 1?µm?year?1, followed by steady state. Microbial and chemical investigations showed that sulphate and thiosulphate reducing prokaryotes were present in the porewater and at the metal surface. Post mortem characterisation revealed contrasting corrosion aspects. The E24 corrosion interface was thick and contained magnetite, mackinawite, hydroxychloride and siderite, together with more oxidised species (goethite, greigite, elemental sulphur). The S235 corrosion interface was thinner and contained siderite and mackinawite. Corrosion damage of the 316L electrode was negligible, and the surface was covered by a thin fringe of pyrite.  相似文献   

16.
ABSTRACT

Strong protection capability of zeolite coating for AA6061 substrate from corrosion in NaCl, H2SO4 and NaOH solution has been demonstrated with reduction of corrosion current by five orders of magnitude. Film resistance was identified as the governing parameter in the formation of a barrier shielding the penetration of aggressive species. For the MFI zeolite film growth on the surface of the AA6061 substrate, while the in situ crystallisation (InC) protocol generated loosely packed film made of large zeolite crystal, the dry-gel conversion (DGC) protocol prepared dense film comprising of nanoparticles. Superior protection ability of DGC-grown film is attributed to the increased film resistance associated with a dense and impermeable zeolite layer. As such, the DGC-grown film requiring thinner film thickness around 5?μm showed better anti-corrosion function than the InC-grown film.

This paper is part of a supplementary issue from the 17th Asia-Pacific Corrosion Control Conference (APCCC-17).  相似文献   

17.
Biodiesel has been widely used as an additive to traditional fuel supplies, but the corrosion of metals used in biodiesel infrastructure is becoming an increasing concern. In this study, the influence of water contamination and corrosion behaviour of carbon steel in biodiesel, were characterized using the wire beam electrode (WBE) technique. In situ local current distributions among the electrodes showed a distinct corrosion pattern, with the anodes formed in the area that was exposed to water, and the cathodes formed along the water–biodiesel interface. The anodic current distribution showed a positive correlation with the biodiesel concentration gradient in water.  相似文献   

18.
The crystallization behavior of Zr55Cu30Al10Ni5 bulk amorphous alloy during laser solid forming (LSF) was analyzed. Since laser surface remelting (LSM) is a key process for the LSF, the crystallization behavior of as-cast Zr55Cu30Al10Ni5 bulk metallic glasses (BMGs) during LSM was also investigated. It was found that the amorphous state of the as-cast BMGs was maintained when they were repeatedly remelted four times in a single-trace LSM, and as for the LSF of Zr55Cu30Al10Ni5 bulk amorphous alloy, the crystallization primarily occurred in the HAZ between the adjacent traces and layers after the two layers were deposited. The as-deposited microstructure exhibited a series of phase evolutions from the molten pool to the HAZ as follows: the amorphous → NiZr2–type nanocrystal + amorphous → NiZr2–type equiaxed dendrite + amorphous → Cu10Zr7–type dendrite + NiZr2–type nanocrystal. Among these microstructural patterns, the NiZr2–type nanocrystals and equiaxed dendrites primarily formed from the rapid solidification of the remelted liquid in the laser processing process, and the Cu10Zr7–type dendrites in the HAZ primarily formed by the crystallization of pre-existed nuclei in the already-deposited amorphous substrate.  相似文献   

19.
The corrosion behavior of Ni–Cu alloy in Nutrient Broth medium (peptone from meat 5.0 g, meat extract (N source) 3.0 g, and sodium chloride 6.0 g in 1 L) and in the presence of Aeromonas eucrenophila, isolated from water treatment system, has been studied using electrochemical techniques. Results showed that the polarization curves exhibiting a cathodic shift of the corrosion potential confirmed the increase in the corrosion rates. According to EIS data lower QCPE value for 5 h indicates surface inhomogeneity resulting from surface metal roughening, which is the likely cause of the enhanced dissolution of the metal also observed in SEM micrographs. In addition, the pH values of the medium did not change throughout the experiment; however, after immersion the pH value decreased to acidic value and caused corrosion.  相似文献   

20.
In the present study, an attempt has been made to enhance tribological properties of AM50 magnesium alloy by laser surface melting (LSM) with a 2 kW continuous wave CO2 laser. The microstructure of the laser surface melted zone consists of fine columnar dendrites growing epitaxially from the liquid-solid interface. Microhardness of the melted zone was improved to 55-75 HV as compared to 40 HV of the substrate. The friction and wear behavior of the laser surface melted layer were investigated using a ball-on-flat apparatus under dry sliding condition. It was found that the friction coefficient curve of the laser surface melted layer was similar to that of substrate. They showed a lower initial friction coefficient about 0.18 that after the running-in period increased up to about 0.38. Furthermore, compared with the AM50 substrate, the wear volume of the laser surface melted layer was decreased by 42%, the wear resistance of the laser surface melted layer was improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号