首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yttria-ceria-doped tetragonal zirconia (Y,Ce)-TZP)/alumina (Al2O3) composites were fabricated by hot isostatic pressing at 1400° to 1450°C and 196 MPa in an Ar–O2 atmosphere using the fine powders prepared by hydrolysis of ZrOCl2 solution. The composites consisting of 25 wt% Al2O3 and tetragonal zirconia with compositions 4 mol% YO1.5–4 mol% CeO2–ZrO2 and 2.5 mol% YO1.5–5.5 mol% CeO2–ZrO2 exhibited mean fracture strength as high as 2000 MPa and were resistant to phase transformation under saturated water vapor pressure at 180°C (1 MPa). Postsintering hot isostatic pressing of (4Y, 4Ce)-TZP/Al2O3 and (2.5Y, 5.5Ce)-TZP/Al2O3 composites was useful to enhance the phase stability under hydrothermal conditions and strength.  相似文献   

2.
The relationship between the dispersion of colloidal powder particles in Al2O3–ZrO2 suspensions and the microstructures of consolidated compacts was examined. Suspensions were prepared from Al2O3 powder and ZrO2 sol with average particle sizes of 390 and 62 nm, respectively. The dispersion was controlled by pH and salt concentration adjustments. The compacts composed of completely separated Al2O3 and ZrO2 layers were obtained from well-dispersed suspensions with pH values below about 4 and salt concentration of 0.0527 M. An increase in pH or salt concentration resulted in macroscopically uniform compacts. The compacts made from suspensions with pH values above about 7, however, were composed of a mixture of Al2O3 and ZrO2 agglomerates, with one acting as a matrix and the other a dispersed phase. Suspensions with a pH value of 4.5 and optimum salt concentrations resulted in compacts with microscopically uniform microstructure. Above or below these salt concentrations, ZrO2 agglomerates were distributed in an Al2O3 matrix. The optimum concentration was dependent on solid content. In addition, the dispersion of mixed suspensions was compared with those of single-component suspensions. The ZrO2 particles formed three-dimensional networks during agglomeration, which reduced the component separation in suspensions and during consolidation.  相似文献   

3.
Tensile Ductility in Zirconia-Dispersed Alumina at High Temperatures   总被引:1,自引:0,他引:1  
High-temperature plastic flow in Al2O3-10 wt% ZrO2 (2.5 mol% Y2O3) has been examined at temperatures between 1400° and 1500°C. Al2O3-10 wt% ZrO2 (2.5 mol% Y2O3) exhibits much higher flow stress and smaller tensile elongation below about 1450°C than 0.1 wt% MgO-doped single-phase Al2O3. The suppression of grain growth with ZrO2 dispersion into Al2O3 is not effective for improving the tensile ductility. The limited ductility in Al2O3-10 wt% ZrO2 (2.5 mol% Y2O3) is associated with the increment of flow stress caused by ZrO2. The ZrO2 dispersion or segregation in Al2O3/Al2O3 boundaries suppresses the grain boundary sliding and hence results in the increased flow stress at high temperatures.  相似文献   

4.
Dispersion states of aqueous composite Al2O3/ZrO2 colloidal suspensions were studied by measuring particle size distribution as a function of pH. Mutual dispersion was achieved at pH values of 2.0 to 3.5. Consolidated composites formed by colloidal filtration reflected the uniformity of the colloidal state. The mean flexural strength (896 MPa) of the sintered compacts was 1.6 times that of bodies consolidated by isostatic pressing .  相似文献   

5.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

6.
The fracture toughness of fine-grained undoped ZrO2-toughened Al2O3 (ZTA) was essentially unchanged by postsintering hot isostatic pressing and increased monotonically with ZrO2 additions up to 25 wt%. The strength of ZTA with 5 to 15 wt% tetragonal ZrO2, which depended monotonically on the amount of ZrO2 present before hot isostatic pressing, was increased by pressing but became almost constant between 5 and 15 wt% ZrO2 addition. The strength appeared to be controlled by pores before pressing and by surface flaws after pressing; the size of flaws after pressing increased with ZrO2 content. The strength of ZTA containing mostly monoclinic ZrO2 (20 to 25 wt%) remained almost constant despite the noticeable density increase upon hot isostatic pressing because the strength was controlled by preexisting microcracks whose extent did not change on postsintering pressing. These strength-toughness relations in sintered and isostatically hot-pressed ZTA are explained on the basis of R -curve behavior. The importance of the contribution of microcracks to the toughness of ZTA is emphasized.  相似文献   

7.
Large, hard ZrO2 agglomerates remained in an Al2O3/ZrO2 composite suspension after inefficient ball-milling. The ZrO2 agglomerates shrank away from the consolidated Al2O3/ZrO2 powder matrix during sintering, producing crack-like voids which were responsible for strength degradation.  相似文献   

8.
Alumina and Al2O3/ZrO2 (1 to 10 vol%) composite powders were mixed and consolidated by a colloidal method, sintered to >98% theoretical density at 1550°C, and subsequently heat-treated at temperatures up to 1700°C for grain-size measurements. Within the temperature range studied, the ZrO2 inclusions exhibited sufficient self-diffusion to move with the Al2O3 4-grain junctions during grain growth. Growth of the ZrO2, inclusions occurred by coalescence. The inclusions exerted a dragging force at the 4-grain junctions to limit grain growth. Abnormal grain growth occurred when the inclusion distribution was not sufficiently uniform to hinder the growth of all Al2O3 grains. This condition was observed for compositions containing ≤2.5 vol% ZrO2, where the inclusions did not fill all 4-grain junctions. Exaggerated grains consumed both neighboring grains and ZrO2, inclusions. Grain-growth control (no abnormal grain growth) was achieved when a majority (or all) 4-grain junctions contained a ZrO2 inclusion, viz., for compositions containing ≥5 vol% ZrO2. For this condition, the grain size was inversely proportional to the volume fraction of the inclusions. Since the ZrO2 inclusions mimic voids in all ways except that they do not disappear, it is hypothesized that abnormal grain growth in single-phase materials is a result of a nonuniform distribution of voids during the last stage of sintering.  相似文献   

9.
ZrO2–Al2O3 nanocomposite particles were synthesized by coating nano-ZrO2 particles on the surface of Al2O3 particles via the layer-by-layer (LBL) method. Polyacrylic acid (PAA) adsorption successfully modified the Al2O3 surface charge. Multilayer coating was successfully implemented, which was characterized by ξ potential, particle size. X-ray diffraction patterns showed that the content of ZrO2 in the final powders could be well controlled by the LBL method. The powders coated with three layers of nano-ZrO2 particles, which contained about 12 wt% ZrO2, were compacted by dry press and cold isostatically pressed methods. After sintering the compact at 1450°C for 2 h under atmosphere, a sintered body with a low pore microstructure was obtained. Scanning electron microscopy micrographs of the sintered body indicated that ZrO2 was well dispersed in the Al2O3 matrix.  相似文献   

10.
Alumina and Alumina/Zirconia Multilayer Composites Obtained by Slip Casting   总被引:4,自引:1,他引:3  
The slip casting technique has been revealed as a powerful method to obtain multilayer composites close to theoretical density. From zeta potential and viscosity measurements of Al2O3 and Al2O3/ZrO2 (4 vol% ZrO2) suspensions, the corditions for the preparation of multilayer composites by slip casting have been determined. A microstructural analysis of the different layers by scanning electron microscopy is also reported.  相似文献   

11.
Microstructures are examined of rapidly solidified hypoeutectic Al2O3–25 wt% ZrO2 and eutectic Al2O3–42 wt% ZrO2 ceramic alloys by using transmission electron microscopy and scanning transmission electron microscopy. Structures observed in the hypoeutectic alloy were dendritic. Three different types of dendrite morphologies were observed. These are believed to be the stable α- and metastable γ- and δ- modifications of alumina. The cores of the γ-alumina dendrites were somewhat richer in ZrO2 than those of α-alumina dendrites; δ-alumina dendrites were substantially enriched in ZrO2. The lamellar structure of the eutectic in the Al2O3–42 wt% ZrO2 alloy became increasingly finer with increasing cooling rate and at the highest cooling rates was replaced by a fully amorphous structure (except in some instances a ZrO2-rich needlelike phase identifiable as δ-alumina was found in the amorphous matrix). An interpretation is given of the results obtained, based on assumed metastable free energy curves and dendrite growth theory.  相似文献   

12.
Al2O3/Y2O3-doped ZrO2 composite powders with 50 mol% Al2O3 are prepared by the hydrazine method. As-prepared powders are mixtures of AlO(OH) gel and amorphous ZrO2 solid solutions containing Y2O3 and Al2O3. The formation process leading to α-Al2O3- t -ZrO2 composite powders is examined. Hot isostatic pressing is performed for 2 h at 1400°C under 196 MPa using θ-Al2O3- t -ZrO2 composite powders. The resulting dense, sintered α-Al2O3- t -ZrO2 composites show excellent mechanical strength.  相似文献   

13.
The feasibility of creating "tough surface material" using oxide-fiber-reinforced oxide matrix ceramics was studied. Al2O3 fiber/(ZrO2, Al2O3) matrix composite was used as the surface material of a Si–Ti–C–O-fiber-bonded composite. The sintering of the matrix (ZrO2 and Al2O3) of the surface composite layer (SCL) and its bonding to the fiber-bonded composite (FBC) were done simultaneously by vacuum hot pressing. A spherical indentation test demonstrated the advantage of the SCL in reducing the damage of the base FBC from an indenter, because the high fracture resistance of the surface composite layer could reduce the stress concentration by the cumulative microfracture process.  相似文献   

14.
In the system ZrO2–Al2O3, a new method for preparing ZrO2 solid solutions from ZrCl4 and AlCl3 using hydrazine monohydrate is investigated. c -ZrO2 solid solutions containing up to ∼40 mol% Al2O3 crystallize at low temperatures from amorphous materials. The formation mechanism is discussed from IR spectral data. The values of the lattice parameter α increase linearly from 0.5072 to 0.5105 nm with increasing Al2O3 content. At higher temperatures, transformation of the solid solutions proceeds as follows: c ( SS ) → t ( ss ) → t ( ss ) +α-Al2O3→ m +α-Al2O3. m -ZrO2–α-Al2O3 composite ceramics are fabricated by hot isostatic pressing for 2 h at 1250°C and 196 MPa. Microstructures and mechanical properties are examined, in connection with increasing Al2O3 content.  相似文献   

15.
Composites of Al2O3 and Y2O3 partially-stabilized ZrO2 were isostatically hot-pressed using submicrometer powders as the starting material. The addition of Al2O3 resulted in a large increase in bending strength. The average bending strength for a composite containing 20 wt% Al2O3 was 2400 MPa, and its fracture toughness was 17 MN·w−3/2  相似文献   

16.
Amorphous Al2O3–ZrO2 composite powders with 5–30 mol% ZrO2 have been prepared by adding aqueous ammonia to the mixed solution of aqueous aluminum sulfate and zirconium alkoxide containing 2-propanol. Simultaneous crystallization of γ-Al2O3 and t -ZrO2 occurs at 870°–980°C. The γ-Al2O3 transforms to α-Al2O3 at 1160°–1220°C. Hot isostatic pressing has been performed for 1 h at 1400°C under 196 MPa using α-Al2O3– t -ZrO2 composite powders. Dense ZrO2-toughened Al2O3 (ZTA) ceramics with homogeneous-dispersed ZrO2 particles show excellent mechanical properties. The toughening mechanism is discussed. The microstructures and t / m ratios of ZTA are examined, with emphasis on the relation between strength and fracture toughness.  相似文献   

17.
Al2O3/5-vol%-SiC nanocomposites have been fabricated by using pressureless sintering with MgO and/or Y2O3 sintering aids and post-hot isostatic pressing (HIPing), which circumvents the limitations of hot pressing. Al2O3/SiC nanocomposites that have been doped with 0.1 wt% MgO and 0.1 wt% MgO + 0.1 wt% Y2O3 show an increased sintering density and a homogeneous microstructure, as well as a high fracture strength (1 GPa) after HIPing. In contrast, using Y2O3 as a dopant has a negative impact on the microstructure and the fracture strength. The results suggest that MgO, as a sintering additive, has a key role in improving the densification and controlling the microstructure of Al2O3/SiC nanocomposites.  相似文献   

18.
Fracture toughness of ZrO2-toughened alumina could he increased by macroscopic interfaces, such as those existing in laminated composites. In this work, tape casting was used to produce A/A or A/B laminates, where A and B can be Al2O3, Al2O3/5 vol% ZrO2, and Al2O3/l0 vol% ZrO2. An increase of toughness is observed, even in the Al2O3/Al2O3 laminates.  相似文献   

19.
Al2O3–ZrO2–SiC whisker composites were prepared by surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3 and SiC whisker. The fabricated composites were characterized by a uniform spatial distribution of ZrO2 and SiC whisker phases throughout the Al2O3 matrix. The fracture toughness values of the Al2O3–15 vol% ZrO2–20 vol% SiC whisker composites (∼12 MPa.m1/2) are substantially greater than those of comparable Al2O3–SiC whisker composites, indicating that both the toughening resulting from the process zone mechanism and that caused by the reinforced SiC whiskers work simultaneously in hot-pressed composites.  相似文献   

20.
The microstructures of ZrO2–20 wt% Y2O3 thermal barrier coatings formed by electron beam-physical vapor deposition on a Nibase superalloy have been studied by transmission electron microscopy. The coating systems consist of several layers, including a superalloy substrate, a bond coat, an Al2O3 scale, and the PVD coating. The overall ceramic thermal barrier coatings were characterized, with special emphasis being given to the α-Al2O3 scale which forms between the bond coat and the ZrO2Y2O3 coating. The oxide scale exhibited various morphologies in different coating systems; the majority of the porosity formed in this region for all coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号