首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Tribotests of ceramic specimens of various compositions (Al2O3-1% TiO2, ZrO2-5.3% Y2O3, Al2O3-15% (ZrO2 + 5.3% Y2O3)) were carried out under dry friction conditions. It has been shown that all of the specimens have a high wear resistance, while the Al2O3-15% (ZrO2 + 5.3% Y2O3) specimens have the lowest wear rate and the highest microhardness. This is due to the fine-grained structure of these specimens and their higher density compared to that of the other ceramic compositions.  相似文献   

2.
Reciprocating sliding friction experiments were conducted with various two-phase, directionally solidified Al2O3/ZrO2 (Y2O3) pins sliding on B4C flats in air at temperatures of 296, 873, and 1073 K under dry sliding conditions. Results indicate that all the Al2O3/ZrO2 (Y2O3) ceramics, from highly Al2O3-rich to ZrO2-rich, exceed the main wear criterion requirement of 10−6 mm3 N−1 m−1 or lower for effective wear-resistant applications. Particularly, the eutectics and Al2O3-rich ceramics showed superior wear properties. The composition and microstructure of Al2O3/ZrO2 (Y2O3) ceramics played a dominant role in controlling the wear and friction properties. The controlling mechanism of the ceramic wear, friction, and hardness was an intrinsic effect involving the resistance to shear fracture of heterophase bonding and cohesive bonding and the interlocking microstructures at different scales in the ceramics.  相似文献   

3.
The results of tribological testing of ceramics with the composition ZrO2 + Al2O3, ZrO2 + Y2O3, and ZrO2 + Y2O3 + Al2O3 made of nanostructural powders are presented. The nanopowders have been obtained by chemical precipitation from solutions of zirconium and yttrium chloride salts. The studies have been carried out as applied to machine parts: drawing dies and bearing plugs. The dependence of the wear of friction pairs on the composition of the ceramics is shown.  相似文献   

4.
Lin  Xinhua  Zeng  Yi  Ding  Chuanxian  Zheng  Pingyu 《Tribology Letters》2004,17(1):19-26
Nanostructured and conventional Al2O3-3 wt% TiO2 coatings were deposited by atmospheric plasma spraying. The wear and friction properties of both coatings against a steel ball under dry friction conditions were examined. It was found that the wear resistance of the nanostructured Al2O3-3 wt% TiO2 coating was superior to that of the corresponding conventional counterpart. The improvement in wear resistance of the nanostructured coating was attributed to its higher toughness and cohesion strength between splats. As for the nanostructured coating, the wear mechanism was mainly adhesion with micro-abrasion at low loads (20 N). At high loads (80 N), the wear of the nanostructured coating was controlled by plastic deformation and associated delamination along the splat boundaries, which was similar to that of the conventional coating at low loads. However, the failure of the conventional coating was predominantly brittle fracture within the splats and delamination between splats at high loads.  相似文献   

5.
ZrO2–Y2O3 ceramic coatings were deposited on AISI 304 stainless steel by both a low-pressure plasma spraying (LPPS) and a laser-assisted plasma hybrid spraying (LPHS). Microstructure and tribological characteristics of ZrO2–Y2O3 coatings were studied using an optical microscope, a scanning electron microscope, and an SRV high-temperature friction and wear tester. The LPHS coatings exhibit distinctly reduced porosity, uniform microstructure, high hardness and highly adhesive bonding, although more microcracks and even vertical macrocracks seem to be caused in the LPHS coatings. The ZrO2 lamellae in the LPHS coatings before and after 800°C wear test consist mainly of the metastable tetragonal (t′) phase of ZrO2 together with small amount of c phase. The t′ phase is very stable when it is exposed to the wear test at elevated temperatures up to 800°C for 1 h. The friction and wear of the LPHS coatings shows a strong dependence on temperature, changing from a low to a high wear regime with the increase of temperature. At low temperatures, friction and wear of the LPHS coatings is improved by laser irradiation because of the reduced connected pores and high hardness in contrary to the LPPS coating. However, at elevated temperatures, the friction and wear of the LPHS coatings is not reduced by laser irradiation. At room temperature, mild scratching and plastic deformation of the LPHS coatings are the main failure mechanism. However, surface fatigue, microcrack propagation, and localized spallation featured by intersplat fracture, crumbling and pulling-out of ZrO2 splats become more dominated at elevated temperatures.  相似文献   

6.
The wear of two ceramic materials containing partially stabilized zirconia is studied under unlubricated friction against steel. The first material, with ZrO2 and 3 mol % Y2O3, was obtained by cold isostatic pressing and sintering. The second material, comprising ZrO2 and 4 mol % Y2O3, was fabricated by additional hot isostatic pressing. The samples of both materials were fabricated with high and low values of fracture toughness. The samples with high fracture toughness are found to wear more intensively. This fact can be explained by surface micro-cracking during braking as a result of phase transformations.  相似文献   

7.
Low temperature carburising (LTC) allows a significant hardness increase, with a consequent increase in wear resistance, without deteriorating corrosion behaviour. However, wear resistance strongly depends on contact conditions, therefore this work focuses on the dry sliding behaviour of LTC-treated AISI316L austenitic stainless steel against several countermaterials (AISI316L, LTC-treated AISI316L, hard chromium or plasma-sprayed Al2O3–TiO2). LTC produced a hardened surface layer (C-supersaturated expanded austenite), which improved corrosion resistance in NaCl 3.5% and increased wear resistance, to an extent which depends on both normal load and countermaterial. The best results were obtained when at least one of the contacting bodies was LTC-treated, because this condition led to mild tribo-oxidative wear. However, LTC did not improve the behaviour in terms of friction.  相似文献   

8.
In our present study, Al2O3, (ZrO2–3 mol% Y2O3)–39.6 mass% Al2O3 and Si3N4 substrates coated with SrSO4 and SrSO4–10 mass% Ag films were prepared, and the friction and wear properties of these specimens were investigated using a reciprocating ball-on-disk tribometer in the temperature range from room temperature to 1073 K in air. It was clarified that (ZrO2–3 mol% Y2O3)–39.6 mass% Al2O3 substrates coated with chemically precipitated SrSO4 particles and the substrates coated with SrSO4–10 mass% Ag films prepared by mechanically grinding and annealing at 1073 K for 3.6 ks exhibited low friction coefficients and low wear rates at all the testing temperatures. In addition, the average friction coefficients of Si3N4 substrates were reduced above 673 K by coating with chemically precipitated SrSO4 particles.  相似文献   

9.
The tribopairs of water hydraulic plunger pumps are usually operated under severe conditions, due to the poor lubrication of water and silt suspended in natural water. It is essential to identify the desired engineering materials and material combinations for designing water pumps. As the candidate materials of tribopairs, the tribological characteristics of different Al2O3-TiO2 coatings combined with Si3N4 ceramics under silt-laden water and tap water lubrication were investigated. The Al2O3-TiO2 coatings with different weight percentages of TiO2 in a wide range from 3 to 100% were tested. The tribological characteristics of the various couple pairs were researched using a ring-on-ring test rig. The microstructures of the contact surfaces were analyzed with a scanning electron microscope before and after the test to study the wear mechanism. The experimental results indicate that the friction coefficient of the Al2O3-TiO2/Si3N4 tribopairs increases with an increase in the percentage of TiO2 content in the Al2O3-TiO2 coating. However, the TiO2 content does not present a clear relationship with the wear rate. Considering the friction and wear properties, Al2O3-13%TiO2 is the preferred coating to use in water hydraulic pumps when sliding against Si3N4.  相似文献   

10.
Xian Jia  Xiaomei Ling 《Wear》2005,258(9):1342-1347
In the present study, the abrasive wear characteristics of Al2O3/PA1010 composite coatings were tested on the turnplate abrasive wear testing machine. Steel 45 (quenched and low-temperature tempered) was used as a reference material. The experimental results showed that when the Al2O3 particles have been treated with a silane coupling agent (γ-aminopropyl-triethoxysilane), the abrasive wear resistance of Al2O3/PA1010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PA1010 composite coatings and the linear correlation coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA1010 composite coatings. By treating the surface of Al2O3 particles with the silane coupling agent, the distribution of Al2O3 particles in PA1010 matrix is more homogeneous and the bonding state between Al2O3 particles and PA1010 matrix is better. Therefore, the Al2O3 particles make the Al2O3/PA1010 composite coatings have better abrasive wear resistance than PA1010 coating. The wear resistance of Al2O3/PA1010 composite coatings is about 45% compared with that of steel 45.  相似文献   

11.
This paper studies the friction and wear behaviour of two important bearing materials, Thordon XL and LgSn80, in dry and lubricated sliding vs. plasma-sprayed Cr2O3 coatings. As a reference, AISI 1043 steel is also studied under the same conditions. SEM, EDS and surface topography were employed to study the wear mechanisms. The results indicate that the Thordon XL/Cr2O3 coating pair gives the lowest dry friction coefficient (0.16) under a normal load of 45.3 N (pressure 0.453 MPa) at a velocity of 1 m/s. The dry friction coefficient of Thordon XL/Cr2O3 coating increases to 0.38 under a normal load of 88.5 N (pressure 0.885 MPa). The dry friction coefficients of the LgSn80/Cr2O3 coating are in the range of 0.31–0.46. Secondly, both dry wear rate under low normal load (45.3 N) and lubricated wear rate under a load of 680 N for Thordon XL are lower than those of LgSn80 in sliding against plasma-sprayed Cr2O3 coatings at a speed of 1 m/s. However, under a normal load of 88.5 N the dry wear rate of Thordon XL is much higher than that of LgSn80. Thirdly, a high viscosity lubricant (SAE 140) leads to lower wear for Thordon XL and LgSn80 than a low viscosity lubricant (SAE 30). Finally, the dominating wear mechanism for Thordon XL is shear fracture when against the plasma-sprayed Cr2O3 ceramic coating. For LgSn80 against plasma-sprayed Cr2O3 ceramic coating, abrasive wear is the governing failure mechanism.  相似文献   

12.
J.H. Ouyang  S. Sasaki  T. Murakami  K. Umeda 《Wear》2005,258(9):1444-1454
Spark-plasma sintering is employed to synthesize self-lubricating ZrO2(Y2O3) matrix composites with different additives of CaF2 and Ag as solid lubricants by tailoring the composition and by adjusting the sintering temperature. The friction and wear behavior of ZrO2(Y2O3) matrix composites have been investigated in dry sliding against an alumina ball from room temperature to 800 °C. The effective self-lubrication at different temperatures depends mainly on the content of various solid lubricants in the composites. The addition of 35 wt.% Ag and 30 wt.% CaF2 in the ZrO2(Y2O3) matrix can promote the formation of a well-covered lubricating film, and effectively reduce the friction and wear over the entire temperature range studied. The friction coefficients at low temperatures were at a minimum value for the composite containing 35 wt.% of silver. At this silver concentration, low and intermediate temperature lubricating properties are greatly improved without affecting high-temperature lubrication by the calcium fluoride in ZrO2(Y2O3) matrix composites. The worn surfaces and transfer films formed during wear process have been characterized to identify the synergistic lubrication behavior of CaF2 and Ag lubricants at different temperatures.  相似文献   

13.
The effects of some anti-wear additives on the friction and wear behaviour of plasma-sprayed Cr2O3 coating were investigated using a block-on-ring tester at ambient conditions. The results show that zinc dialkyldithiophosphate (ZDDP), tricesyl phosphate (TCP) and tributyl phosphate (TBP) significantly reduce the wear of Cr2O3 coating lubricated by paraffin oil. Additive concentrations as well as sliding time have great influence on the wear. The friction coefficient varies slightly with test conditions. The analysis by XPS of worn surfaces indicates that the wear resistance of these additives is due to the formation of tribochemical reaction films by reacting with Cr2O3 coatings.  相似文献   

14.
In this paper, a series of ZrO2 matrix high-temperature self-lubricating composites were prepared by hot-press technique. The effect of Mo and Ag on the friction and wear behavior of the ZrO2(Y2O3)–Ag–CaF2–Mo composites in a wide temperature range was investigated. The XRD results showed that CaMoO4 formed on the worn surface above 400 °C. The excellent lubrication performance of CaMoO4 endowed the low coefficient of friction of the ZrO2(Y2O3)–Ag–CaF2–Mo composites at high temperatures. The ZrO2(Y2O3)–10Ag–10CaF2–10Mo composites showed favorable wear resistance at all the tested temperatures which was attributed to the combined action of hardness and phase transformation.  相似文献   

15.
The paper describes a method of coating combining two different layer types. The first layer is Al2O3 produced by plasma spraying with a thickness of around 200 μm which was deposited on a stainless steel substrate. Subsequently, ZrO2 layers were deposited on to the Al2O3 coating by a sol–gel process using a dip coating technique. The dip coating process was repeated in order to see the influence of the number of ZrO2 layers. Moreover, the effect of annealing temperature was investigated. In order to study their tribological behaviour, the coatings were subjected to micro-scale abrasion, scratch testing and ball-on-disc tests. The result shows that sol–gel ZrO2 top layers reduce friction and enhance the wear resistance of the coating system.  相似文献   

16.
Self-lubricating ZrO2(Y2O3)–Al2O3–Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) composites have been fabricated by spark plasma sintering (SPS) method. The tribological properties have been evaluated using a high-temperature friction and wear tester at room temperature and 760 °C in dry sliding against alumina ball. The composites exhibit distinct improvements in effectively reducing friction and wear, as compared to the unmodified ZrO2(Y2O3)–Al2O3 ceramics. The ZrO2(Y2O3)–Al2O3–Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) composites have great low and stable friction coefficients of less than 0.15 and wear rates in the order of 10− 6mm3/Nm at 760 °C. Delamination is considered as the dominating wear mechanism of the composites at room temperature. At elevated temperature, the formation and effective spreading of Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) lubricating films during sliding play an important role in the reduction of the friction and wear.  相似文献   

17.
The tribological characteristics of low-pressure plasma-sprayed (LPPS) Al2O3 coating sliding against alumina ball have been investigated from room temperature to 800 °C. These friction and wear data have been compared quantitatively with those of bulk sintered alumina to obtain a better understanding of wear mechanisms at elevated temperatures. The friction and wear of Al2O3 coating show a strong dependence on temperature, changing from a mild to a severe wear regime with the increase of temperature. The coefficient of friction at room temperature is approximately 0.17 to 0.42, depending on applied load. The tribochemical reaction between the coating surface and water vapor in the environment and the presence of the hydroxide film on the Al2O3 coating reduce the friction and wear at room temperature as contrasted to those of bulk sintered alumina. At intermediate temperatures, from 400 to 600 °C, the friction and wear behavior of Al2O3 coating depends on the inter-granular fracture and pull-out of Al2O3 grains. At above 700 °C, formation and deformation of fine grain layer, and abrasive wear in the form of removal of fine alumina grains further facilitate the friction and wear process of Al2O3 coating.  相似文献   

18.
ABSTRACT

The study of laser cladding of 90Ti-10Al2O3, 90Ti-8Al2O3-2Zn and 90Ti-4Al2O3-6Zn coatings onto Ti-6Al-4V alloy, with intention to produce defect-less, high microhardness and wear resistant coating was carried out. The coatings were deposited onto Ti-6Al-4V alloy at 900 W laser power and 0.6 m/min laser scan speed. Microstructures and phase constituents of the developed coatings were investigated by using a scanning electron microscope (SEM) and X-ray diffractometer correspondingly. Vickers microhardness tester and pin-on-disk tribometer were employed to characterize microhardness and wear behaviour of the Ti-Al2O3/Zn coatings respectively. SEM was also used to examine the worn track. It was observed that 90Ti-10Al2O3 coating yielded optimal microhardness along with maximal wear resistance in comparison to the other coatings and Ti-6Al-4V alloy. It has been established that laser cladding of Ti-Al2O3 coating with Zn contents on Ti-6Al-4V alloy alleviates the formation of cracks, however, microhardness and wear properties are negatively affected.  相似文献   

19.

Six kinds of Ni60 alloy coatings with different percentage of Y2O3 were prepared by laser cladding. A metallurgical microscope was used to analyze the morphology of the cladding layer. Scanning electron microscopy and EDS energy spectrum analysis were used to characterize the microstructure and element segregation of the cladding layer. A Vickers microhardness tester was used to measure the hardness of the cladding layer. Finally, a friction and wear tester established the friction and wear properties of the cladding layer. The study results show that Y2O3 can significantly reduce the height of the cladding layer and increase the width of the cladding layer; it can also improve the structure refinement and element segregation of the cladding layer. The microhardness of the cladding layer is significantly improved compared to the Ni60 alloy coating without Y2O3, thereby enhancing the wear resistance of the coating.

  相似文献   

20.
The use of heat-insulating ceramic coatings on the cylinder walls of diesel engines is currently being considered for certain advanced engine designs. Since a major consideration in such an application is the wear resistance of the coatings, a series of tests has been carried out to determine the sliding wear behavior of several pairs of candidate materials systems, initially at room temperature. The tests were performed using a washer-on-disc specimen configuration and an oscillatory rotation movement to simulate the motion of a piston ring on a cylinder wall. It was determined that each material tested had a different pattern of sliding wear behavior. Impregnation of plasma-sprayed Y2O3-ZrO2 with chromia markedly improved its wear resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号