首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
王振  余天堂 《工程力学》2016,33(1):32-38
为了在大型结构分析中考虑小裂纹或以小的代价提高裂纹附近求解精度,该文建立了分析三维裂纹问题的自适应多尺度扩展有限元法。基于恢复法评估三维扩展有限元后验误差,大于给定误差值的单元进行细化。所有尺度单元采用八结点六面体单元,采用六面体任意结点单元连接不同尺度单元。采用互作用积分法计算三维应力强度因子。三维I 型裂纹和I-II 复合型裂纹算例分析表明了该方法的正确性和有效性。  相似文献   

2.
为了更加有效地求解线弹性断裂问题,提出了扩展自然单元法。该方法基于单位分解的思想,在自然单元法的位移模式中加入扩展项表征不连续位移场和裂纹尖端奇异场。通过水平集方法确定裂纹面和裂纹尖端区域,并基于虚位移原理推导了平衡方程的离散线性方程。由于自然单元法的形函数满足Kronecker delta函数性质,本质边界条件易于施加。混合模式裂纹的应力强度因子由相互作用能量积分方法计算。数值算例结果表明扩展自然单元法可以方便地求解线弹性断裂力学问题。  相似文献   

3.
岩体中含有大量节理、裂隙、断层等各类结构面,结构面在应力作用下的扩展与贯通是导致岩体破坏的重要原因。数值流形方法 (NMM)可以有效模拟连续和非连续问题,然而,其在多裂纹动态扩展的模拟方面仍处于探索阶段。该文以线弹性断裂力学原理为基础,提出了一种基于高阶数值流形方法的多裂纹扩展模拟算法。通过在基函数中增加关键项来考虑裂纹尖端位移场的奇异性;裂纹尖端的应力强度因子则采用了J积分来计算;Ⅰ型-Ⅱ型混合裂纹的开裂和扩展方向依据最大周向拉应力准则来判断;采用假设-修正的多裂纹扩展算法解决了多裂纹的扩展问题。根据强化后的基函数,对于不符合单纯形积分形式的被积函数,采用了泰勒级数展开式计算近似解。通过多个静态裂纹扩展的经典问题的数值模拟对计算方法的合理性和计算精度及进行了验证。  相似文献   

4.
介绍了一种在近十年里发展的裂纹扩展力测量方法,这种方法将裂纹扩展的门槛值行为与直流电位法结合起来,可以测量某一载荷下裂纹开始扩展的应力强度因子Kpr,并由此计算有效应力强度因子范围ΔKeff=Kmax-Kpr。  相似文献   

5.
无网格法模拟复合型疲劳裂纹的扩展   总被引:11,自引:2,他引:9  
本文提出了用无网格Galerkin法模拟构件在复合变形作用下疲劳裂纹扩展路径并预估其疲劳寿命的方法。该法能够自然模拟疲劳裂纹的扩展,不需要网格重构,避免了裂纹扩展过程中的精度受损。应用无网格数值结果计算了J积分和应力强度因子IK和IIK;按照最大周向应力理论获得了裂纹扩展偏斜角。基于最小应变能密度因子理论,确定了裂纹扩展量aD,并能获得疲劳载荷的循环周数ND。文末对数值模拟结果和实验拟合结果进行了对照。  相似文献   

6.
管节点表面裂纹疲劳扩展的数值模拟   总被引:2,自引:1,他引:1  
本文采用线弹簧单元与ADINA程序结合计算了表面裂纹在交变载荷作用下的应力强度因子,首次提出了预埋线弹簧单元法模拟表面裂纹疲劳扩展,并发展了相应的技术和软件。  相似文献   

7.
该文将扩展有限元方法应用到几何非线性及断裂力学问题中,并研制开发了扩展有限元Fortran程序。扩展有限元法其计算网格与不连续面相互独立,因此模拟移动的不连续面时无需对网格进行重新剖分。该文推导了几何非线性扩展有限元法的公式,在常规有限元位移模式中,基于单位分解的思想加进一个阶跃函数和二维渐近裂尖位移场,反映裂纹处位移的不连续性,并用2个水平集函数表示裂纹;采用拉格朗日描述方程建立了有限变形几何非线性扩展有限元方程;采用多点位移外推法计算裂纹应力强度因子并通过最小二乘法拟合得到更精确的结果。最后给出的大变形算例表明该文提出的几何非线性的断裂力学扩展有限元方法和相应的计算机程序是合理可行的,而且对于含裂纹及裂纹扩展的问题,扩展有限元法优于传统的有限元法。  相似文献   

8.
基于Franc3D数值模拟法及子模型技术,对气瓶瓶筒处表面裂纹进行裂纹扩展的动态数值模拟及三维应力强度因子计算,证明该方法的可行性,并用公式迭代法验证该方法的准确性。在此计算结果基础上,对两初始裂纹a_0=3 mm、c_0=6 mm及a_0=3 mm、c_0=9 mm的剩余寿命进行了估算,考虑安全裕度后计算得到两初始裂纹剩余寿命分别为3.5 a和2.6 a。  相似文献   

9.
本文给出了半椭圆表面裂纹疲劳扩展的一种有限元仿真分析方法,并对潜艇锥柱结合壳焊趾处压弯联合交变载荷作用下的裂纹扩展进行了计算分析。该方法利用有限元分析计算裂纹前沿应力强度因子,采用Paris公式预测裂纹扩展速率及扩展量,对有限元网格随着裂纹的扩展进行自动重构,从而模拟分析裂纹的疲劳扩展过程。考察了两种初始尺寸半椭圆表面裂纹的情况,计算了裂纹尺寸、应力强度因子随裂纹扩展的变化历程。仿真计算结果表明,初始裂纹尺寸对于疲劳扩展的影响主要体现在初、中期的扩展上,对后期的扩展速率、裂纹形态影响不大;当考虑了焊接区应力集中效应后,扩展的速度提高,总的疲劳扩展寿命下降。本文方法和程序可用于其他较复杂构件表面裂纹的扩展分析。  相似文献   

10.
新的估算表面裂纹应力强度因子经验公式   总被引:1,自引:0,他引:1  
该文给出了新的估算拉伸和纯弯曲载荷下表面裂纹应力强度因子的经验公式。根据疲劳裂纹扩展的数值模拟结果确定强度因子分布函数;利用按已知应力强度因子分布函数求裂纹形状及相应应力强度因子的方法计算给定尺寸的表面裂纹的应力强度因子;通过对数值结果的曲线回归得到估算表面裂纹应力强度因子经验公式。利用该公式对有限厚度和宽度平板内表面裂纹的应力强度因子进行了估算,并与已知的半椭圆形表面裂纹的应力强度因子解进行了比较。该文结果为估算表面裂纹应力强度因子提供了一种新的途径。  相似文献   

11.
In this paper, the extended finite element method (X‐FEM) formulation for the modeling of arbitrary crack propagation in coupled shell/solid structures is developed based on the large deformation continuum‐based (CB) shell theory. The main features of the new method are as follows: (1) different kinematic equations are derived for different fibers in CB shell elements, including the fibers enriched by shifted jump function or crack tip functions and the fibers cut into two segments by the crack surface or connecting with solid elements. So the crack tip can locate inside the element, and the crack surface is not necessarily perpendicular to the middle surface. (2) The enhanced CB shell element is developed to realize the seamless transition of crack propagation between shell and solid structures. (3) A revised interaction integral is used to calculate the stress intensity factor (SIF) for shells, which avoids that the auxiliary fields for cracks in Mindlin–Reissner plates cannot satisfy exactly the equilibrium equations. Several numerical examples, including the calculation of SIF for the cracked plate under uniform bending and crack propagation between solid and shell structures are presented to demonstrate the performance of the developed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a coupling technique for integrating the element‐free Galerkin method (EFGM) with the fractal finite element method (FFEM) for analyzing homogeneous, isotropic, and two‐dimensional linear‐elastic cracked structures subjected to mixed‐mode (modes I and II) loading conditions. FFEM is adopted for discretization of the domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region interface elements are employed. The shape functions within interface elements which comprise both the EFG and the finite element (FE) shape functions, satisfies the consistency condition thus ensuring convergence of the proposed coupled EFGM–FFEM. The proposed method combines the best features of EFGM and FFEM, in the sense that no special enriched basis functions or no structured mesh with special FEs are necessary and no post‐processing (employing any path independent integrals) is needed to determine fracture parameters, such as stress‐intensity factors (SIFs) and T‐stress. The numerical results show that SIFs and T‐stress obtained using the proposed method are in excellent agreement with the reference solutions for the structural and crack geometries considered in the present study. Also, a parametric study is carried out to examine the effects of the integration order, the similarity ratio, the number of transformation terms, and the crack length to width ratio on the quality of the numerical solutions. A numerical example on mixed‐mode condition is presented to simulate crack propagation. As in the proposed coupled EFGM–FFEM at each increment during the crack propagation, the FFEM mesh (around the crack tip) is shifted as it is to the new updated position of the crack tip (such that FFEM mesh center coincides with the crack tip) and few meshless nodes are sprinkled in the location where the FFEM mesh was lying previously, crack‐propagation analysis can be dramatically simplified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A new variable‐order singular boundary element for two‐dimensional stress analysis is developed. This element is an extension of the basic three‐node quadratic boundary element with the shape functions enriched with variable‐order singular displacement and traction fields which are obtained from an asymptotic singularity analysis. Both the variable order of the singularity and the polar profile of the singular fields are incorporated into the singular element to enhance its accuracy. The enriched shape functions are also formulated such that the stress intensity factors appear as nodal unknowns at the singular node thereby enabling direct calculation instead of through indirect extrapolation or contour‐integral methods. Numerical examples involving crack, notch and corner problems in homogeneous materials and bimaterial systems show the singular element's great versatility and accuracy in solving a wide range of problems with various orders of singularities. The stress intensity factors which are obtained agree very well with those reported in the literature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The analysis of three‐dimensional crack problems using enriched crack tip elements is examined in this paper. It is demonstrated that the enriched finite element approach is a very effective technique for obtaining stress intensity factors for general three‐dimensional crack problems. The influence of compatibility, integration, element shape function order, and mesh refinement on solution convergence is investigated to ascertain the accuracy of the numerical results. It is shown that integration order has the greatest impact on solution accuracy. Sample results are presented for semi‐circular surface cracks and compared with previously obtained solutions available in the literature. Good agreement is obtained between the different numerical solutions, except in the small zone near the free surface where previously published results have often neglected the change in the stress singularity at the free surface. The enriched crack tip element appears to be particularly effective in this region, since boundary conditions can be easily imposed on the stress intensity factors to accurately represent the correct free surface condition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
An improved 4-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger–Reissner variational principle and the shape functions are formulated directly for the 4-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has 9 independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling and linear free vibration problems. The element is validated with standard test cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.  相似文献   

16.
This paper is aimed at modeling the propagation of multiple cohesive cracks by the extended Voronoi cell finite element model or X-VCFEM. In addition to polynomial terms, the stress functions in X-VCFEM include branch functions in conjunction with level set methods and multi-resolution wavelet functions in the vicinity of crack tips. The wavelet basis functions are adaptively enriched to accurately capture crack-tip stress concentrations. Cracks are modeled by an extrinsic cohesive zone model in this paper. The incremental crack propagation direction and length are adaptively determined by a cohesive fracture energy based criterion. Numerical examples are solved and compared with existing solutions in the literature to validate the effectiveness of X-VCFEM. The effect of cohesive zone parameters on crack propagation is studied. Additionally, the effects of morphological distributions such as length, orientation and dispersion on crack propagation are studied.  相似文献   

17.
An extended finite element method (XFEM) is developed to study fracture parameters of cracked metal plates and tubes that are repaired on top of the crack with a composite patch. A MATLAB® stand‐alone code is prepared to model such structures with eight‐noded doubly curved shell elements in the XFEM framework. Crack trajectory studies are performed for a diagonally cracked panel under fatigue loading. Verification studies are investigated on different shell type structures such as a cracked spherical shell and cracked cylindrical pipe with different crack orientations. The effects of using patch repairs with different fibre orientations on the reduction of stress intensity factors (SIFs) is also studied which can be useful for design purposes. XFEM is selected as any crack geometry can be embedded in the finite element mesh configuration with no need to coincide the crack geometry with meshed elements and so re‐meshing with fine mesh generation is not needed in the current method.  相似文献   

18.
Three-dimensional finite element analyses are performed on through-thickness cracks with slightly wavy front in center-cracked plates. Considering there is an inherent relationship between the crack shape and the corresponding stress intensity factor (SIF) distribution of a crack, the curved configuration of the crack is determined using a heuristically derived iterative procedure if the SIF distribution function is known. Several simple SIF distribution functions, for instance the constant SIF distribution along the crack front, are assumed to determine the crack shape. Under the assumption that the rate of fatigue crack growth depends on the SIF range or the effective SIF range, possible effects of plate thickness, crack length and crack closure level gradient on the behaviour of crack tunneling are investigated. The stability of the curved shape of a through-thickness crack in fatigue is also discussed, i.e. whether a crack can maintain its shape satisfying the conditions of constant SIF distribution or other distribution along the crack front during fatigue growth. This study will be useful for a better understanding of the behaviour of crack tunneling and help to evaluate the validity of the two-dimensional linear elastic fracture mechanics in cracked plates.  相似文献   

19.
为求解裂尖位于界面上的垂直双材料界面裂纹应力强度因子,发展了一种加料有限元方法。该方法应用Williams本征函数展开和线性变换方法求解裂尖渐进位移场,将该位移场加入常规单元位移模式中,得到加料垂直界面裂纹单元和过渡单元的位移模式,给出加料有限元方程。建立了典型垂直界面裂纹平面问题的加料有限元模型,求解加料有限元方程直接得到应力强度因子,与文献结果对比表明该方法具有较高的精度,可方便地推广应用于垂直界面裂纹的计算分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号