首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
利用Factsage软件、SEM、XRD等研究了不同原始组织的0.2C-5.0Mn-0.5Si-1.0Al中锰TRIP钢经临界区退火处理后的显微组织与力学性能。结果表明,经热力学计算、设计的不同预处理工艺处理后试验钢的组织分别为:铁素体+块状残留奥氏体(700 ℃预处理10 min)、铁素体+马氏体+少量残留奥氏体 (800 ℃预处理5 min) 和马氏体+少量碳化物 (900 ℃预处理5 min)。不同预处理工艺处理后试样能获得不同形貌的残留奥氏体,700 ℃预处理+临界退火试样得到块状残留奥氏体,其他两种工艺下为膜状残留奥氏体。800 ℃预处理+临界退火试样拥有最佳力学性能,屈服强度为840 MPa,抗拉强度为1121.5 MPa,伸长率为33.25%,强塑积达到37.29 GPa·%。残留奥氏体形貌对中锰钢的加工硬化性能有显著影响,700 ℃预处理+临界退火试样的块状残留奥氏体稳定性较差,表现出高的加工硬化率,但持续区间较短;而800 ℃预处理+临界退火试样的膜状残留奥氏体稳定性更好,试样呈现较高的加工硬化率且持续区间较长。  相似文献   

2.
研究了第三代高强度高塑性低碳中锰冷轧TRIP钢的退火工艺对性能的影响和残留奥氏体稳定性。结果表明:临界区退火温度和保温时间对钢的力学性能具有显著影响,退火温度为590℃,保温时间为18 h时,实验用钢6.72%Mn-TRIP可获得815 MPa的抗拉强度和38%的断后伸长率,强塑积30 GPa·%;临界区保温时,C、Mn元素由马氏体配分到新形成的残留奥氏体,使残留奥氏体稳定在室温。大量残留奥氏体以及配分之后的马氏体和发生再结晶的铁素体,使材料具有良好的塑性和强度。  相似文献   

3.
利用光学显微镜、扫描电镜、电子万能拉伸机和EBSD、XRD分析技术研究了中锰TRIP钢热轧后不同退火温度对组织和性能的影响。结果表明,经过热轧后,组织中有δ-铁素体条带、马氏体和残留奥氏体。当退火温度从600 ℃增加到900 ℃时,屈服强度由610.3 MPa下降到496.7 MPa,抗拉强度从757.3 MPa下降至630.4 MPa。热轧试验钢在700 ℃退火时伸长率最大,为44.9%。从整体上看,当热轧试验钢在700 ℃退火后综合力学性能最优,强塑积最高,为33.8 GPa·%。  相似文献   

4.
采用连续退火模拟试验机对TRIP590钢进行不同工艺条件的快速热处理模拟试验,用金相显微镜、透射电镜和拉伸试验机对试验钢的组织和性能进行研究。结果表明,时效温度对强塑积的影响最大,其次是两相区退火温度,再次是时效时间。850℃退火,430℃时效,时效时间420 s时可以达到最大强塑积,为最优组合工艺。  相似文献   

5.
利用扫描电镜(SEM)、X射线衍射仪(XRD)和拉伸试验机等系统研究了0.2C-5Mn-1.5Al-0.5Si中锰TRIP钢经不同预处理及临界退火处理后的微观组织演变和力学性能变化。结果表明,缩短预处理时间,不影响珠光体含量,但是能细化铁素体与马氏体晶粒;730℃临界退火5 min时,试验钢组织中皆出现了块状和薄膜状的两种残留奥氏体,而预处理时间更短的试验钢中奥氏体与铁素体晶粒更细;预处理时间短的试验钢抗拉强度和断后伸长率整体高于预处理时间更长的试验钢,并在预处理时间较短的工艺下,退火后获得最佳力学性能:断后伸长率为34%,强塑积为34.34 GPa·%,在拉伸过程中没有屈服延伸现象,具有良好的加工硬化能力。  相似文献   

6.
利用扫描电子显微镜(SEM)、X射线衍射(XRD)以及室温单轴拉伸试验研究了临界区退火温度对低合金冷轧C-Mn-Al-Si系TRIP钢微观组织及力学行为的影响。结果显示,随着临界区退火温度的升高,TRIP钢组织中铁素体相和残留奥氏体相的含量降低,而贝氏体相的含量不断增加;试验钢的屈服强度和抗拉强度均提高,而塑性则不断下降。高临界区温度下形成了较多的贝氏体相,大量位于贝氏体板条间的片状残留奥氏体因变形过程中过于稳定而无法使TRIP效应得以充分的发挥,从而影响材料加工硬化能力的提高。  相似文献   

7.
采用ART (奥氏体逆相变)退火热处理工艺,研究了两相区温轧和退火过程中冷轧中锰TRIP钢中残余奥氏体体积分数变化与加工硬化行为。结果表明:冷轧实验钢经两相区温轧退火处理后,获得了临界铁素体与残余奥氏体或马氏体组成的超细晶复相组织。在645℃,随退火时间的延长,受少量碳化物析出及溶解与C、Mn元素富集程度的影响,残余奥氏体含量由20. 8%先下降至18. 7%后回升至22. 8%最后又骤降至4. 5%。退火时间小于5 h时,实验钢持续加工硬化水平较高,其中均匀塑性形变阶段中,加工硬化指数随退火时间增加,表现出先升高后降低的变化趋势,在退火1 h时加工硬化能力达到最高。  相似文献   

8.
高石  潘学福 《金属热处理》2021,46(12):124-129
针对无Nb和0.05wt%Nb两种中低碳钢,研究了Nb对0.25wt%C超级贝氏体钢组织与性能的影响。结果表明,对两种试验钢采用轧后先快冷后缓冷的等温工艺,均可获得贝氏体组织。300 ℃等温8 h,含Nb钢贝氏体含量达到80%,屈服强度提高12% (109 MPa),冲击吸收能量达到52 J。通过Thermal-Calc软件计算并结合TEM观察发现,含Nb钢中Nb元素与Mo等元素形成复杂碳化物,析出的细小碳化物钉扎板条边界,细化贝氏体板条,抑制板条合并与粗化,提高板条的稳定性。等温8 h后,含Nb钢的贝氏体铁素体板条尺寸在150~200 nm之间。利用背散射电子和EBSD分析发现,Nb元素通过促进碳化物的析出,降低过冷奥氏体稳定性,促进贝氏体转变,抑制马氏体转变,细化残留奥氏体,提高了组织的均匀性和稳定性,是性能提高的主要机制。  相似文献   

9.
利用SEM、TEM以及EBSD技术对经过不同温度、不同时间退火低碳高硅中锰钢(锰含量7.6%)的组织和性能进行研究.结果表明:退火温度及退火时间对于中锰钢强度和塑性有重要影响.当退火温度为680℃时塑性最好,且随着退火时间的延长塑性逐渐增加,强塑积最高可达到30 GPa%.不同温度退火后的组织均为铁素体和残留奥氏体两相,使用EBSD技术可以发现在晶界处呈现薄膜状的大量残留奥氏体,薄膜状残奥产生的TRIP效应能够有效增加中锰钢的伸长率.  相似文献   

10.
研究了硅含量分别为1.5wt%和1.0wt%的冷轧低碳硅锰TRIP钢两相区退火温度对残留奥氏体量和力学性能的影响。结果表明,随两相区退火温度的升高,两种钢的残留奥氏体量和残留奥氏体中的含碳量以及其屈服强度和抗拉强度都上升。当硅含量降至1.0%时,对钢的残留奥氏体量没有影响,但是降低了残留奥氏体中的碳含量,同时降低了钢的抗拉强度。两种钢的最大强塑积值相近,约为22000MPa%。  相似文献   

11.
采用扫描电镜、X射线衍射等研究了连续退火工艺中退火、淬火和配分等关键过程参数对中锰Q&P钢碳元素分配行为的影响,并分析了相应工艺条件下残留奥氏体量与碳含量的关系。结果表明:两相区退火温度的提高会导致奥氏体中的碳含量下降,微观组织表现为奥氏体含量增加,渗碳体量减少;退火时间10~60 s时,随着退火时间的延长,奥氏体含量和碳含量急剧增加,60 s后基本保持稳定;试验条件下淬火温度对残留奥氏体及碳含量的影响不显著;配分温度350~500℃时,随着配分温度的提高,奥氏体含量和碳含量呈现先增加后减小的趋势,配分温度450℃时均达到最大值;延长配分时间,残留奥氏体含量呈现先减少后增大再减少的趋势,残留奥氏体中的碳含量先减小后增加。  相似文献   

12.
利用连续退火模拟试验机对两种含Nb中锰钢进行Q&P热处理实验,通过SEM、EBSD、拉伸试验及X射线衍射法研究了不同淬火温度对含Nb中锰Q&P钢组织性能的影响。结果表明:淬火温度通过影响初生马氏体量进而影响最终室温奥氏体含量,其中对5Mn钢的影响低于7Mn钢。当淬火温度为180 ℃时,5Mn-Nb钢获得的最大抗拉强度可达1041 MPa,伸长率为34.9%,强塑积可达36000MPa?%;7Mn-Nb钢在淬火温度为60 ℃的Q&P工艺处理下获得的最大抗拉强度可达1245MPa,伸长率为32.4%,强塑积可达40338MPa?%。  相似文献   

13.
吴静  董欣欣  刘丽萍 《金属热处理》2020,45(12):102-105
以冷轧TRIP980钢为研究对象,探讨了退火温度、过时效温度和过时效时间对钢板组织性能的影响。结果表明:退火温度从800 ℃降低至760 ℃,随着奥氏体化程度的降低和原奥稳定性的增强,冷却后组织中硬相含量更低,残奥含量更高,宏观表现为拉伸强度降低、伸长率提高;过时效温度从360 ℃提高至400 ℃,随着贝氏体体积分数的提高,拉伸强度提高;过时效时间从600 s延长至1500 s,随着硬相贝氏体的软化和残奥稳定性增大,拉伸强度降低、伸长率提高。  相似文献   

14.
研究了650℃下退火时间对冷轧Fe-0.14C-5Mn钢的组织结构和力学性能的影响规律,利用SEM进行了组织结构表征,采用XRD法测量了残留奥氏体量,通过拉伸试验机测试了钢的单轴拉伸性能。结果表明,退火过程中发生奥氏体逆转变,退火1min以后即形成20%以上的亚稳奥氏体;随退火时间的延长,抗拉强度(Rm)逐渐升高,屈服强度逐渐降低;断后伸长率(A)和强塑积(Rm×A)先升高而后降低,在650℃退火10 min时塑性(46%)和强塑积(46 GPa%)获得最大值。分析认为高含量亚稳奥氏体相的TRIP效应以及超细的晶粒尺寸是获得超高强度、超高塑性及高的强塑积的主要原因。  相似文献   

15.
Dilatometric analysis of austenite formation during intercritical annealing   总被引:1,自引:0,他引:1  
Dilatometry is a useful method to investigate the transformation kinetics of ferrous alloys. In the present study, a dilatometric analysis procedure that considers the effect of non-isotropic volume change was applied to evaluate the kinetics of austenite formation during the intercritical annealing of TRIP steels. Metallographic analysis was conducted to validate the dilatemetric analysis results. The austenite fractions from the dilatometric analysis showed reasonable agreement with those from the metallographic one. This verifies that the kinetics of austenite formation during heat treatment of low carbon TRIP steel can be reliably analyzed with the proposed procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号