首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
Nano‐SiO2 was introduced into in‐situ composites of polycarbonate (PC) and a thermotropic liquid crystalline polymer (TLCP) using a twin‐screw extruder. The rheology of these composites was characterized with capillary rheometry, and the morphology of the dispersed TLCP observed with scanning electron microscopy. The rheological data revealed that the viscosity decrease of PC melts by only the addition up to 20 wt% TLCP remained smaller than 30%, while it became ~48% upon further addition of only about 1 wt% nano‐SiO2 and larger than 60% upon ~9 wt% nano‐SiO2 filling, in contrast to a 50% viscosity increase of PC melts with increase in nanosilica loading up to ~9 wt%. These silica‐filled composites exhibited markedly low viscosity, especially at relatively high shear rates. The morphology of TLCP extracted from unfilled and silica‐filled composites indicated that the largest viscosity reduction was correlated well with the fibrillation of TLCP droplets enhanced by nano‐SiO2. The TLCP/SiO2/PC composites exhibited rheological hybrid effect with fillers at nanometer scale. POLYM. ENG. SCI., 47:757–764, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
A two‐step process, thermotropic liquid‐crystalline polymer (TLCP) premixing with reduced graphene oxide (RGO) followed by blending with polyamide 6,6 (PA66), was used to prepare ternary TLCP/RGO/PA66 blends. The rheological behaviors, morphology, and mechanical properties of the blends were investigated. The results show that RGO migrated from the TLCP phase to the interface between the TLCP and PA66 phase during melt blending; this was due to a similar affinity of the RGO nanosheets to both component polymers. The dimensions of the dispersive TLCP domains were markedly reduced with the mounting RGO content; this revealed a good compatibilization effect of RGO on the immiscible polymers. The hierarchical structures of the TLCP fibrils were found in both the unfilled TLCP/PA66 blends and TLCP/RGO/PA66 blends. This supposedly resulted from the extensional and torsional action of unstable capillary flow. With the addition of RGO, the viscosities of the blends decreased further, and the fibrillation of TLCP and the mechanical performance of TLCP composites were both enhanced. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43735.  相似文献   

3.
Jun Chen  Peng Chen  Lichuan Wu  Jun Zhang 《Polymer》2007,48(14):4242-4251
Ternary blends composed of a liquid crystalline polymer (LCP), nano-SiO2 and polysulfone (PSF) were prepared by melt blending. Very long and perfectly oriented LCP fibrils were in situ formed in capillary flows by adding 5 vol% of nano-SiO2 to binary PSF/LCP blend. Dynamic rheology analysis indicated that the sharp increase of elasticity was caused by higher content of nano-SiO2. Then the entrance angle was decreased and elongational stress increased when the polymer melt flowed through the abrupt contraction, which resulted in the fibrillation of LCP in PSF/LCP/nano-SiO2 system.  相似文献   

4.
Propylene-ethylene copolymer (EP) nanocomposites based on nano-SiO2 with and without Zn-ion coating were developed by conventional melt blending technique in a sigma internal mixer. Two composites each with 2.5 wt% filler were developed. The first composite was made by melt blending EP with nano-SiO2 in a co-rotating sigma internal mixer. The second one was obtained by melt blending the same EP, but with Zn-ion coated nano-SiO2. In case of Zn-ion coated nano-SiO2 filled EP, wide-angle X-ray diffraction study (WAXD) showed a decrease in interplanar distance and lamellar polymer crystal size when compared to nano-SiO2 filled EP. Differential scanning calorimetric (DSC) results showed Zn-ion coated nano-SiO2 acting more as an effective nucleating agent than that of the nano-SiO2. Thermogravimetric analysis (TGA) results showed improved thermal stability for EP in the presence of both the nanofillers. However, the thermal stability of Zn-ion coated nano-SiO2 filled EP is higher than that of the nano-SiO2 filled EP. Scanning electron microscope (SEM) study reveals that the Zn-ion coated nano-SiO2 homogeneously distributed in the matrix, whereas nano-SiO2 forms chainlike aggregates in the matrix phase. Dynamic mechanical analysis (DMA) study indicates that both the fillers increase storage modulus, E′; this increment is more prominent in nano-SiO2 filled EP due to the formation of chain-type aggregates of nano-SiO2.  相似文献   

5.
通过熔融共混的方法制备出一类含有玻璃纤维(GF)或玻璃微珠(GB)和热致液晶聚合物(TLCP)的聚酰胺6(PA6)、聚碳酸酯(PC)增强/填充塑料。毛细管流变测试表明,TLCP作为一种加工助剂,少量加入即可有效降低基体树脂(PA6、PC)的熔体表观黏度。而对于含有短纤维或刚性颗粒填料的三元混杂复合材料,在5%~55%(质量含量,下同)较宽的填料含量范围内,三元混杂复合材料的熔体表观黏度在一定的剪切速率范围内低于或接近于任一纯树脂或任一二元共混物的熔体表观黏度,说明这类增强/填充塑料具有优异的加工流动性。  相似文献   

6.
A polymer melt entering a capillary die from a cylinder undergoes a convergent flow in which there is a complex combination of extensional and shear flows. The convergent flow plays an important role in controlling the in situ fibrillation of thermotropic liquid crystalline polymer (TLCP) in a thermoplastic matrix melt. This study examines effects of the convergent flow on development of TLCP fibrils in a TLCP/poly(ethylene naphthalate) (PEN) blend. A capillary rheometer was used and the extent of the convergent flow was varied by changing capillary dimension and shear rate. With a given capillary die, the TLCP fibrillation was found to increase with increasing shear rate because of the increased deformation of TLCP droplets. The establishment of a fully developed shear velocity profile by using a relatively long die is considered to be necessary to retain the TLCP fibrils initiated in the convergent flow region. At a given high shear rate, TLCP fibrillation improves with increasing capillary diameter (≤2 mm) because of the increased difference in velocity between the capillary and the cylinder. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1505–1513, 2004  相似文献   

7.
Polycarbonate (PC)/liquid crystalline polymer (LCP) blends dually filled with glass fiber and nano‐SiO2 were prepared by melt blending, with the use of a commercial Vectra A130 as the source of LCP and glass fiber. In these dually filled PC/LCP melts, rheological hybrid effect occurred, confirmed by the melt viscosity of the quadruple polymer blends decreased with increasing nano‐silica loading, influenced by the minor LCP phase in the blend. The drastic viscosity reduction closely correlates with the deformation and fibrillation of LCP droplets in the system. The LCP fibrillation was controlled jointly by the thermodynamic and hydrodynamic driving forces. Finally, the dually filled PC/LCP melt had decreased viscosity lower than those of pure PC, silica‐filled PC, and PC/Vectra A130 blends, and furthermore had decreased glass fiber breakage, shown by larger average aspect ratio than that in PC/Vectra A130 blends. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

8.
Baoqing Zhang  Peng Chen  Jun Zhang  Guo-Hua Hu 《Polymer》2005,46(14):5385-5395
The influence of well-dispersed nano-clay filler on the morphology of thermotropic liquid crystalline polymer (TLCP) in nylon-6 matrix was investigated by melt extrusion process. The good dispersion of clay in the hybrid blends was confirmed by X-ray diffraction, transmission electron microscopy and rheological measurement. Morphological observation showed that the clay platelets had dramatic influences on the dispersion and deformation of TLCP phase. The TLCP droplets got smaller at the clay content ≤3 wt%, and deformed into fibrils at the clay content up to 5 and 7 wt%. The morphology evolution of TLCP in the hybrid blends, especially at 7 wt% of clay loading, was consistent well with the prediction based on the micro-rheology parameters such as the viscosity ratio of the dispersed phase to the matrix (ηdm) and the ratio of capillary number to the critical capillary number (Ca/Cacrit). This enhanced fibrillation of TLCP droplets was attributed to the role of nano-clay particles as a compatibilizer to improve the interfacial adhesion and to suppress the interfacial slip between TLCP and nylon phases in the melt, so that the shear stress was effectively transferred to the dispersed TLCP phase.  相似文献   

9.
Two kinds of different size calcium carbonates are blended and filled into polypropylene in 30 wt%. The melting viscosity of PP composites samples is measured by capillary extrusion rheometer at 230°C. The results show that the melt viscosity of PP composites evidently decreased when that was filled with the blending 325 and 1,500 mesh CaCO3 and the 1,500 mesh proportion in fillers was from 20 to 60 wt%. The viscosity in the low shear velocity decreased more than that in the high shear velocity. The shear viscosity of single filler and filler samples with the size distribution at the different temperature was studied by capillary extrusion rheometer. The results show that the flow activation energy and the flow activation entropy of composites filled with the size distribution filler increased. The change of the flow activation entropy and the model of the efficient arrangement of the structure are used to explain the phenomenon in melting viscosity decrease of PP filled with the size distribution fillers. A structural model of composites that filled with the size distribution fillers was set up. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
By blending thermoplastics (TPs)—polycarbonate (PC) and polyethersulfone (PES)—with thermotropic liquid crystalline polymers (TLCPs)—KU9221 and KU9231—and then extruding the blends to form fibers, the in situ reinforcing characteristics were studied. The injection experiment of blends was compared with the extrusion experiment. According to the experimental results, in situ reinforcing characteristics of these processes were analyzed theoretically. These researches have come to some important conclusions. TLCP domains can be transformed to form fibers that are oriented in the direction of flow during processing; these TLCP microfibers result in improved mechanical properties of the TP/TLCP blends. The extruding flow is more effective in orienting TLCP domains and results in better in situ reinforcement than that of injection molding, and the extruded fibers have better mechanical properties. The mechanical properties of the blend fibers are improved greatly with increasing tensile ratio of melt drawing and the content of TLCPs.  相似文献   

11.
Studies on melt rheological properties of blends of low density polythylene (LDPE) with selected grades of linear low density polyethylene (LLDPE), which differ widely in their melt flow indices, are reported. The data obtained in a capillary rheometer are presented to describe the effects of blend composition and shear rate on flow behavior index, melt viscosity, and melt elasticity. In general, blending of LLDPE I that has a low melt flow index (2 g/10 min) with LDPE results in a decrease of its melt viscosity, processing temperature, and the tendency of extrudate distortion, depending on blending ratio. A blending ratio around 20–30% LLDPE I seems optimum from the point of view of desirable improvement in processability behavior. On the other hand, blending of LLDPE II that has a high melt flow index (10g/10 min) with LDPE offers a distinct advantage in increasing the pseudoplasticity of LDPE/LLDPE II blends. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The melt apparent shear viscosity (ηa) of polypropylene (PP) composites filled with aluminum hydroxide [Al(OH)3] and magnesium hydroxide [Mg(OH)2] was measured by means of a capillary rheometer under experimental conditions of temperature ranging from 180 to 200°C and apparent shear rate varying from 10 to 2 × 103 s−1, to identify the effects of the filler particle content and size on the melt viscosity. The results showed that the melt shear flow of the composites obeyed the power law and presented pseudoplastic behavior. The dependence of ηa on temperature was consistent with the Arrhenius equation. The sensitivity of ηa for the composite melts to temperature was greater than that of the unfilled PP, and weakened with increasing apparent shear rate. The ηa increased linearly with an increase of the weigh fraction of the flame retardant, especially in the low apparent shear rate region. The ηa of the composites decreased slightly with an increase of particle size of flame retardant. Moreover, the variation for the ηa with particle size of flame retardant was much less than with apparent shear rate under these test conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The effects of filler content and its surface treatment on the melt flow properties of A‐glass bead‐filled poly(propylene) (PP) composites have been investigated using a capillary rheometer at a wide apparent shear rate scope of 150 to 7 200 s–1 and a temperature range of 160 to 200°C. It was found that the melt shear flow obeyed roughly the power law. The melt shear viscosity (ηw) of the treated glass bead‐filled system with a silane coupling agent was somewhat higher than that of the raw glass bead‐filled system when both the systems were subjected to the same test conditions. The increase of the resistance to flow and flow satiability for the former system can be attributed to the improvement of the compatibility and interfacial adhesion between the filler and matrix as well as the dispersion of the filler in the matrix due to the surface treatment of the glass beads. The dependence of ηw on temperatures can be expressed with an Arrhenius relationship. The temperature sensitivity of ηw for the composite melts is greater than that of the unfilled PP. Furthermore, ηw increases obviously with the volume fraction (ϕf) of the fillers at lower shear rates, while the dependence of ηw on ϕf decreases with the increase of shear rates. This is attributable to the increase of the ability of relative movement between the filler and matrix melt at high extrusion rates.  相似文献   

14.
Chi-Kwong Chan 《Polymer》2005,46(24):10890-10896
Shear-induced interactions between high molecular mass polyethylene (HMMPE) melt and a thermotropic liquid crystalline copolyester, HBA/HQ/SA (TLCP) were investigated using large amplitude oscillatory shear and capillary shear. Polarized optical microscopy (POM) observations show that the mono-domain nematic TLCP droplets embedded inside a HMMPE melt may be readily elongated using large amplitude oscillatory shear. The HMMPE melt adjacent to the elongated TLCP filament was observed to crystallize faster than that in the matrix away from the interface. TEM analysis on the 1 wt% TLCP/HMMPE blend quenched after capillary shear shows that there are strong interfacial interactions between the elongated TLCP filament and the HMMPE matrix. Long range PE lamellae orientational order up to 2 μm away from the TLCP filament surface were observed, with all the lamellae surface normal parallel to the TLCP fiber. Additionally, a strong interfacial compatibility between the TLCP filament and the HMMPE matrix with an interfacial thickness of ∼30 nm has also been observed. The enhanced interfacial compatibility is attributed to the -CH2- group interactions due to chain alignment in both components at their interface. These results provide a fundamental insight to other TLCP containing thermoplastics where compatibilities may be present due to segmental interactions.  相似文献   

15.
Thermal, rheological, morphological, and mechanical properties of a thermotropic liquid crystalline polymer, TLCP (copolyester Vectra A-950 from Hoechst), blended with a polycarbonate (PC), a polyethylene glycol terephthalate (PETG), and a blend of PC and PETG (20/80) are presented and discussed. Important supercooling effects are observed for the TLCP. For the blends the glass transition temperature of the matrix is shown to decrease slightly, suggesting partial miscibility of the components. A finer dispersion is observed for the TLCP/PC blends, at least for TLCP concentrations lower than 20%, for which the mechanical properties are quite good. For higher TLCP concentrations, as well as for the other two matrices, the mechanical properties follow more or less the mixing rule, and the morphology of the blends suggests poor adhesion. We were unable to obtain fibrillar structures by extruding the blends through a capillary rheometer; in the TLCP/PC blends, the TLCP domains were too small, and for the other blends the extrudates had not enough melt strength.  相似文献   

16.
Polypropylene/ethylene-propylene rubber/nanosilica (PP/EPR/nano-SiO2) composites were prepared by a melt blending masterbatch process using a Brabender mixer. In order to improve the interfacial adhesion and achieve diverse desired properties of the composites, nanosilica surface silylation by means of two silane coupling agents: N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane (AEAPTMS) and 3-methacryloxypropyltrimethoxysilane (MPTMS) was explored. The composites were also compatibilized using three compatibilizers: methyl methacrylate grafted PP (MMA-g-PP), glycidylmethacrylate grafted PP (GMA-g-PP) and maleic anhydride grafted PP (MAH-g-PP). The properties of the blends and the composites were examined using tensile and Izod impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (ATG) and scanning electron microscopy (SEM). According to the mechanical property evaluations, the incorporation of nano-SiO2 particles into PP/EPR blend improved the tensile strength and Young’s modulus of the composites. The elongation and Izod impact strength were adversely affected. A significant improvement in the mechanical properties was obtained for the composites with AEAPTMS-SiO2 and MAH-g-PP. The DSC results indicated that the incorporation of the modified silica and MAH-g-PP increased the crystallinity of the composites. However, no significant variation in the crystallinity was observed as a result of the addition of MMA-g-PP and GMA-g-PP. The TGA results revealed that the composites exhibit a higher thermal stability than that of the neat matrix. SEM micrographs of the fractured surfaces revealed a two-phase morphology with EPR nodules being dispersed in the PP matrix. SEM also indicated that the incorporation of MAH-g-PP into PP/EPR composites contributes to a better dispersion of the EPR phase and nano-SiO2 particles in the polymer matrix.  相似文献   

17.
Nanosized calcium carbonate (nano‐CaCO3)‐filled poly‐L ‐lactide (PLLA) biocomposites were compounded by using a twin‐screw extruder. The melt flow behavior of the composites, including their entry pressure drop, melt shear flow curves, and melt shear viscosity were measured through a capillary rheometer operated at a temperature range of 170–200°C and shear rates of 50–103 s?1. The entry pressure drop showed a nonlinear increase with increasing shear stress and reached a minimum for the filler weight fraction of 2% owing to the “bearing effect” of the nanometer particles in the polymer matrix melt. The melt shear flow roughly followed the power law, while the effect of temperature on the melt shear viscosity was estimated by using the Arrhenius equation. Hence, adding a small amount of nano‐CaCO3 into the PLLA could improve the melt flow behavior of the composite. POLYM. ENG. SCI., 52:1839–1844, 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
The influences of thermotropic liquid crystalline copolyester (TLCP) on viscosity reduction in high molecular mass polyethylene (HMMPE) filled with organoclay were investigated by controlling the blending sequence. The interactions between organoclay and TLCP in HMMPE create different morphologies and influence rheological properties of the clay/TLCP/HMMPE blends. When the organoclay was blended with TLCP first, large amounts of organoclay formed partially intercalated structures in TLCP, with phase separation occurring at the temperature when TLCP was in the nematic phase, corresponding an antagonistic effect which weakens viscosity reduction ability of TLCP for HMMPE. However, with first blending of TLCP with HMMPE and then adding organoclay into the blend, most of the organoclay enriched on TLCP surfaces in the blend. Such interaction prevents TLCP droplets from coalescing at high shear stresses, enlarging the processing window. A phenomenological model, originally for HMMPE/TLCP systems, was successfully adopted to predict the flow behaviors of clay/HMMPE/TLCP blends. POLYM. ENG. SCI., 50:1679–1688, 2010. © 2010 Society of Plastics Engineers  相似文献   

19.
Jun Chen  Peng Chen  Lichuan Wu  Jun Zhang 《Polymer》2006,47(15):5402-5410
Induced by different fillers, various hydrodynamic effects enhance the fibrillation of liquid crystalline polymer (LCP) in in situ hybrid composites. Through choosing CaCO3 whisker as the filler and polysulfone (PSF) as the matrix, the effect of the filler size and the affinity between components on the morphological evolution of LCP droplets has been investigated. In contrast to the spherical or ellipsoidal droplets of LCP formed in binary PSF/LCP blends, the fibrillation of LCP was promoted by the introduction of whisker particles in all ternary blends at shear rates studied. The analysis of the flow field indicated that the predominant factors promoting the fibrillation of LCP were the vortex enhanced and elongational stress increased by the whisker in the converging flow area at the entrance of capillary, rather than the viscosity ratio and capillary number.  相似文献   

20.
BACKGROUND: The melt blending of thermotropic liquid crystal polymers (TLCPs) using conventional thermoplastics has attracted much attention due to the improved strength and tensile modulus of the resulting polymer composites. Moreover, because of their low melt viscosity, the addition of small amounts of TLCPs can reduce the melt viscosity of polymer blends, thereby enhancing the processability. RESULTS: In this study, TLCP/poly(ethylene 2,6‐naphthalate) (PEN) blend fibers were prepared by melt blending and melt spinning to improve fiber performance and processability. The relation between the structure and the mechanical properties of TLCP/PEN blend fibers and the effect of annealing on these properties were also investigated. The mechanical properties of the blend fibers were improved by increasing the spinning speed and by adding TLCP. These properties of the blend fibers were also improved by annealing. The tensile strength of TLCP5/PEN spun at a spinning speed of 2.0 km h?1 and annealed at 235 °C for 2 h was about three times higher than that of TLCP5/PEN spun at a spinning speed of 0.5 km h?1. The double melting behavior observed in the annealed fibers depended on the annealing temperature and time. CONCLUSION: The improvement of the mechanical properties of the blend fibers with spinning speed, by adding TLCP and by annealing was attributed to an increase in crystallite size, an increase in the degree of crystallinity and an improvement in crystal perfection. The double melting behavior was influenced by the distribution in lamella thickness that occurred because of a melt‐reorganization process during differential scanning calorimetry scans. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号