首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The morphology and mechanical properties of polyamide-based blends prepared in single and corotating twin-screw extruders were compared using transmission electron microscopy (TEM) techniques. Reactive polyamide blends with SEBS-g-MA (a maleated styrenic triblock copolymer with ethylene–butvlene midblocks), EPR-g-MA (a maleated ethylene/propylene rubber), and ABS were selected for the purpose of this investigation. For blends of SEBS-g-MA with difunctional (nylon x,y) polyamides (e.g., nylon 6,6; nylon 12,12), the twin-screw extruder was more effective in producing a finer dispersion of the rubber phase, which resulted in a significant lowering of the ductile–brittle transition temperature in case of the nylon 6,6 blend. On the other hand, blends of SEBS-g-MA with the mono-functional nylon 6 material led to rubber particles that were too small for toughening for both extruder types employed in this work. For nylon 6/EPR-g-MA blends, the single-screw extruder led to blends with excellent low-temperature impact properties for both single-step and masterbatch mixing techniques, whereas nylon 6/EPR-g-MA blends prepared in a single-step operation in the twin-screw extruder were brittle under ambient conditions. For difunctional polyamide blends with ABS (compatibilized with an imidized acrylic polymer), the morphology and mechanical properties were found to be independent of the extruder type employed for processing. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
J.J. Huang 《Polymer》2006,47(2):624-638
The elastomer particle morphology in ternary blends of maleated and non-maleated ethylene-based elastomers with polyamides has been examined. The elastomers used include an ethylene/propylene copolymer, EPR, with a maleic anhydride (MA) grafted version, EPR-g-MA, and an ethylene/1-octene copolymer, EOR, with maleated versions EOR-g-MA-X% where X is 0.35, 1.6 or 2.5. The polyamides used were nylon 6 and an amorphous polyamide, Zytel 330 from DuPont. The morphology development was explored from both thermodynamic and kinetic points of view where the former refers to miscibility of the elastomers and the latter might include the ratio of the elastomers, the matrix type, the order of mixing, mixing intensity, i.e. the extruder type, and graft structure, etc. Both sources influence the morphology developed. For ternary blends with EPR-g-MA/EPR, the morphology (particle size and distribution) seems to be well controlled via the level of maleation in the rubber phase. The two polyamides generate comparable rubber particle sizes at the same of MA level. For ternary blends with EOR-g-MA/EOR, the morphology strongly depends on the level of MA; the rubber particle size, in general, is much smaller in nylon 6 blends than in Zytel 330 blends. Morphology of ternary blends with EOR-g-MA/EOR is much more complex than that of blends with EPR-g-MA/EPR due to the co-existence of miscibility limits and the kinetic factors. Miscibility of maleated EOR elastomers is examined via transmission electron microscopy (TEM) using a special staining technique; a miscibility boundary, as revealed by TEM, occurs around Δ(%MA)=0.9−1.25 MA%. If the two elastomers are miscible, a unimodal particle size distribution always appears in blends regardless of the kinetic factors; however, if immiscibility prevails, either a unimodal or bimodal particle size distribution may develop depending on the ratio of the elastomers and the matrix type. The order of mixing and the mixing intensity do not seem to change the modality of the size distribution.  相似文献   

3.
The effects of rubber type and particle size on the mechanical properties of glass fiber reinforced blends of nylon 6 and EPR/EPR-gMA or SEBS/SEBS-g-MA were investigated; rubber particle size in the two systems could be controlled by varying the ratio of EPR to EPR-g-MA or SEBS to SEBS-g-MA. Unreinforced materials with the highest levels of toughness did not necessarily lead to the highest fracture energy when reinforced with 15 wt% glass fibers. Materials toughened with SEBS/SEBS-gMA, which are tougher in the absence of glass fibers had lower fracture energies when 15 wt% glass fibers are present. In general, smaller rubber particles led to higher fracture energies. Fracture analysis according to a modified essential work of fracture analysis reveals that SEBS/SEBS-g-MA have high values of the dissipative energy density, ud, in the absence of glass fibers. When 15 wt% glass fibers are added, ud is essentially zero for all the materials tested. The limiting specific fracture energy, u0, on the other hand, was higher for both unreinforced and glass fiber reinforced EPR/EPR-g-MA toughened blends than for SEBS/SEBS-g-MA based materials. Transmission electron microscopy observations of fractured specimens indicate that glass fibers decrease the size of the damage zone of rubber toughened nylon 6. Shear yielding was seen in fractured specimens of reinforced nylon 6 blends containing either SEBS/SEBS-g-MA or EPR-g-MA, but the size of this shear yielded zone was larger for EPR/EPR-g-MA. In addition, EPR/EPR-g-MA based materials displayed craze-like deformations, while SEBS-g-MA materials did not exhibit this deformation process.  相似文献   

4.
J.J. Huang 《Polymer》2004,45(12):4203-4215
Rubber toughening of an amorphous polyamide (Zytel 330) using combinations of triblock copolymers of the type SEBS and a maleic anhydride functionalized version, SEBS-g-MA, was investigated and the results compared with those of nylon 6 and nylon 66. The effects of rubber content and the type of extruder on the morphology, Izod impact behavior and the ductile-brittle transition temperature were explored. The shape and sizes of the rubber particles in blends with this amorphous polyamide were found to be more similar to those in nylon 6 than in nylon 66 blends. The twin screw extruder produced smaller particles with a more narrow distribution of sizes than the single screw extruder. Higher rubber contents generally yielded tougher blends; there is a critical rubber particle size above which the ternary blends are brittle at 20 wt% total rubber. The ductile-to-brittle temperature was found to decrease with increased rubber content and decreased rubber particle size. In general, the trends for this amorphous polyamide are rather similar to those reported earlier for semi-crystalline nylon 6 and nylon 66.  相似文献   

5.
J.J. Huang 《Polymer》2006,47(10):3505-3519
The fracture behavior of an amorphous polyamide (Zytel 330 from DuPont), a-PA, and nylon 6 toughened by maleated poly(ethylene-1-octene) elastomers are reported. The deformation mechanisms during fracture were verified by examining an arrested crack tip and the surrounding regions using transmission electron microscopy analysis. a-PA blends show higher levels of impact strength and lower ductile-brittle transition temperatures than nylon 6 blends. Fracture toughness, characterized by both linear elastic fracture mechanics techniques in terms of the critical strain energy release rate, GIC, and the essential work of fracture methodology, i.e. the limiting specific fracture energy, uo, and the dissipative energy density, ud, using thick (6.35 mm) samples with sharp notches, depends on ligament length, rubber content, rubber particle size and test temperature. In general, a-PA blends show larger values of ud than do nylon 6 blends while the opposite is seen for uo. The amorphous polyamide shows a similar critical upper limit on rubber particle size, or interparticle distance, for toughening as the semi-crystalline nylon 6; thus, it is clear that the crystal morphology around the rubber particles must not be the dominant cause of this critical size scale. The deformation mechanisms involved include cavitation of rubber particles followed by some crazing and then massive shear yielding of the matrix.  相似文献   

6.
The effect of polyamide end-group configuration on morphology generation and toughness of blends with maleated elastomers was investigated. Two difunctional polyamides, a copolymer containing 15% nylon 6,6 and an amine enriched nylon 6, were compared to monofunctional nylon 6 materials of equivalent molecular weight and melt viscosity. Difunctional polyamides have some chains with amine groups on both ends capable of reacting with the maleated rubber phase resulting in crosslinking-type effects. The elastomers used included styrene-butadiene-styrene block copolymers with a hydrogenated midblock, SEBS, and versions with X% grafted maleic anhydride, SEBS-g-MA-X%, and a maleated ethylene/propylene random copolymer, EPR-g-MA. Blends based on difunctional polyamides form large, complex rubber particles when compounded in a single-screw extruder; however, by compounding with an appropriate twin-screw extruder, the size and complexity of the particles can be reduced to levels similar to blends with the monofunctional nylon 6 controls. Measurement of the extent of reaction between the amine end groups and the grafted maleic anhydride revealed that a larger number of amine groups are consumed for the difunctional polyamides than for their monofunctional controls. The room-temperature Izod impact strength of blends with the difunctional polyamides is greater than are the corresponding blends with the controls; however, subambient toughness depends mainly on the inherent ductility of the polyamide matrix. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Biobased aromatic polyamide/organoclay (Cloisite30B, C30B) nanocomposites were melt-compounded with reactive and nonreactive styrene–ethylene–butylene–styrene (SEBS) rubbers at different weight contents to form ternary and quaternary blends. The mechanical properties were investigated as a function of the blend composition. The elongation at break and the impact strength increase with increasing SEBS rubber content, whereas the Young's modulus logically decreases proportionally to SEBS amount. Extra addition of SEBS grafted maleic anhydride (SEBS-g-MA) induces a synergistic effect. The SEBS-g-MA makes it possible to limit the aforementioned rigidity loss and to greatly increase the impact strength. The critical strain energy release rate increases significantly when both reactive and nonreactive rubbers are combined. Three types of microstructures appear depending on the blend composition: (1) small and numerous well-dispersed particles when reactive rubber is used, (2) about 10 times bigger and less numerous well-dispersed particles in the case of nonreactive rubber, and (3) a flocculated dispersion of small particles when both reactive and nonreactive rubber are added. Finally, the polyamide performances were significantly increased when the flocculated morphology was noticed due to a better PAXD/SEBS interfacial adhesion given by the SEBS-g-MA compatibilization and to a thinner rubber distribution in the matrix. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48888.  相似文献   

8.
The mechanical properties of nylon 6 and its blends with maleated ethylene-propylene rubber (EPR-g-MA) plus glass fibers were examined as a function of the chemical functionality of the silane surface treatment applied to the glass fibers. Three reactive silane coupling agents, with anhydride, epoxy, or amine functionality, were used and found to have little effect on the mechanical properties when no EPR-g-MA is present. When 20 wt% EPR-g-MA is used as a rubber toughener, however, the yield strength and Izod impact strength were lowest for the amine functional silane and highest for the anhydride silane, while the epoxy silane fell in-between. These results were attributed to the differences in reactivity of the three reactive silanes. An unreactive silane (octyl groups) was used as a release agent on the glass fibers and compared with the anhydride functional silane. The octyl silane did not improve the ductility of the composite, as may have been speculated, and had poor yield strength and impact resistance when compared to the anhydride silane. Both octyl and anhydride treated glass fibers improve the heat distortion temperature such that most of the high temperature stiffness that is lost on addition of EPR-g-MA is regained by adding glass fibers.  相似文献   

9.
The poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was toughened by melt extrusion through its blending with a styrene-b-ethylene/butadiene-b-styrene triblock copolymer (SEBS), or with maleic anhydride (MA) grafted SEBS (SEBS-g-MA). Their morphology, mechanical properties, and rheology have been investigated. Transmission electron microscopy revealed that both kinds of blends had an island-sea structure at low concentrations of SEBS or SEBS-g-MA and a bicontinuous one at sufficiently high concentrations. However, the percolation threshold was higher for SEBS than for the SEBS-g-MA. The Izod impact strength of PPO could be significantly improved through its blending with SEBS-g-MA, particularly in a blend with 20 wt% of SEBS-g-MA at which it had a maximum value. The rheological experiments indicated that the incorporation of SEBS increased and that of SEBS-g-MA decreased the melt viscosity of the system.  相似文献   

10.
Compatibilizer plays very important roles in preparing high performance polymer composites, not only for the ternary immiscible polymer blends, but also for the recycled and reused of waste plastics mixture. Generally, the compatibilizers can be used as the toughening agent in blending polymer materials. In the present work, the poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) or maleic anhydride-grafted poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS-g-MA) acts as the compatibilizer and toughening agent for the preparation of R-PET/LDPE/SEBS (70/20/10) ternary blends. It must be pointed that the ternary blends are costlessly and conveniently prepared from the recycled poly(ethylene terephthalate) (R-PET) and linear low density polyethylene (LLDPE) through a melt blending in a co-rotating twin-screw extruder and injection moulded. The morphologies of the ternary blends are characterized by scanning electron microscopy (SEM). It was found that the blends contains reactive or non-reactive compatibilizer, the morphology originates from the LLDPE particles encapsulated by both SEBS and SEBS-g-MA. So, it results to the reduced interfacial tension between of the R-PET and SEBS-g-MA, in which the grafted chains of PET-g-SEBS-g-MA formed through in situ reaction between R-PET and SEBS-g-MA phases. Therefore, core–shell particles with smaller diameter disperse uniformly in the blends. Moreover, the good compatibilization and corresponding morphologies induce in balanced mechanical and thermal properties. DSC analysis show the dispersed phase particles could act as nucleating agent in the R-PET matrix, which results the improvement of the crystallization temperature. And it was also observed the decreased nucleation activity in graft copolymers in the R-PET/LLDPE/SEBS-g-MA blends. Notched Charpy impact strength and elongation at break are improved by the addition of compatibilizer.  相似文献   

11.
Recent work has shown that nylon 6/acrylonitrile–butadiene–styrene (ABS) blends can be made tough by the addition of some polymer additives that are chemically reactive with nylon 6 and physically compatible with the styrene-acrylonitrile copolymer (SAN) phase of ABS. Imidized acrylic polymers (IA) represent a successful example of such additives that improve the dispersion of ABS in the nylon 6 matrix and render the blends tough. This article examines the possibility of toughening nylon 6 with ethylene/propylene/diene elastomer grafted with SAN copolymer (EPDM-g-SAN). This EPDM-g-SAN consists of 50% rubber and 50% SAN by weight. However, it was found that the same IA that works well to disperse ABS materials of similar rubber content is not as effective for EPDM-g-SAN, primarily because the EPDM forms the continuous phase, not SAN, and, thus, interfaces with nylon 6 during melt blending. Maleated elastomers like maleic anhydride grafted ethylene–propylene copolymer (EPR-g-MA) and styrene–(ethylene-co-butylene)–styrene triblock copolymer (SEBS-g-MA) were more effective for dispersing EPDM-g-SAN in the nylon 6 matrix than IA. Various mechanisms that improve the dispersion are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Young-Cheol Ahn 《Polymer》2006,47(8):2830-2838
The rubber toughening of nylon 6 nanocomposites prepared from an organoclay was examined as a means of balancing stiffness/strength versus toughness/ductility. Nine different formulations varying in montmorillonite, or MMT, and maleated ethylene/propylene rubber or EPR-g-MA rubber content were made by mixing of nylon 6 and organoclay in a twin screw extruder and then blending the nanocomposites with the rubber in a single screw extruder. In this sequence, the MMT platelets were efficiently dispersed in the nylon 6 matrix. The MMT platelets did not penetrate into the rubber phase. The addition of clay affected the dispersion of the rubber phase resulting in larger and more elongated rubber particles. The tensile properties and impact strength of these toughened nanocomposites are discussed in terms of the MMT and rubber contents and morphology. There is a clear trade-off between stiffness/strength versus toughness/ductility.  相似文献   

13.
The present investigation deals with the mechanical and morphological properties of binary polyamide 12/maleic anhydride-grafted styrene-b-(ethylene-co-butylene)-b-styrene rubber (PA12/SEBS-g-MA) blends at varying dispersed phase (SEBS-g-MA) concentrations. Tensile behavior, impact strength and crystallinity of these blend systems were evaluated. Influence of microstructure, dispersed phase particle size, and ligament thickness on the impact toughness of the blend was studied. DSC data indicated an increase in crystallinity of PA12 in the blends. Tensile modulus and strength decreased while impact strength and elongation-at-break increased with the elastomer concentration. The enhanced properties were supported by interphase adhesion between the grafted maleic groups of rubber with polar moiety of polyamide 12. Analysis of the tensile data employing simple theoretical models showed the variation of stress concentration effect with blend composition.  相似文献   

14.
Blends of polystyrene/polyamide 6 (PS/PA6) compatibilized by styrene-ethylene/butylene-styrene (SEBS) elastomer grafted with maleic anhydride were prepared by melt blending. Wide-angle X-ray diffraction (WAXD) scans indicated a skin–core structure formed in the specimens during the injection-molding process. The results showed that the specimens tended to form the α-crystalline form in the core region, but the γ-crystalline form in the skin region. The influences of PS and SEBS-g-MA on the crystallization of PA6 were different in the core region and skin region. In the core region, PS made the PA6 tend to be in the γ-crystalline form, but the influence of PS was contrary in the skin region. SEBS-g-MA had both enhancement and toughening effects on the blends. The mechanical properties of the blends were determined by the combined action of the two aforementioned factors.  相似文献   

15.
Polyamide 12 (PA12)/styrene-ethylene/butylene-styrene (SEBS) and PA12/maleic anhydride grafted SEBS (SEBS-g-MA) blends were prepared in a twin-screw extruder followed by injection moulding. Thermal and crystallisation behaviours of these blends were evaluated. Thermal properties and morphology of the blends were estimated using thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. The phase structure of the blends was interpreted by dynamic mechanical thermal analyser (DMTA). In terms of temperature at maximum rate of degradation (Tmax) and integral procedural decomposition temperature (IPDT), it was found that PA12/SEBS-g-MA (PM) blends possessed greater thermal stability than PA12/SEBS (PS) blends. The kinetics of degradation process of PA12 and its blends were studied using Coats-Redfern (CR) method. It was found that there is no appreciable change in the thermal stability of PA12 in the presence of small amount of rubber phase. A good correlation was observed between the thermal properties and phase morphology of the blends. Melting and crystallisation behaviours of the blends were analysed by differential scanning calorimetry (DSC). These results showed that the melting and crystallisation behaviours of PA12 were not significantly affected by blending with rubbers. It was also observed that the functional group present in the rubber phase has little effect on the melting and crystallisation behaviours of PA12.  相似文献   

16.
Aravind Dasari  Yiu-Wing Mai 《Polymer》2005,46(16):5986-5991
Knowledge of the nature of molecular processes occurring during melt compounding of nanomaterials and polymers is crucial in determining the ultimate performance of polymer nanocomposites. In this paper, we demonstrate for the first time with detailed transmission electron microscopy, the parameters that affect the microstructure of polymer nanocomposites by varying the blending sequence. Nylon 66/organoclay/SEBS-g-MA ternary nanocomposites prepared by four different blending sequences exhibited distinct microstructure and mechanical properties. It was concluded that the best microstructure for toughness and other mechanical properties is to have the maximum percentage of the exfoliated organoclay in the nylon 66 matrix rather than to have it in the dispersed SEBS-g-MA phase. The presence of organoclay in the SEBS-g-MA phase reduces the latter's ability to cavitate, resulting in reduced toughening efficiency.  相似文献   

17.
Low density polyethylene (LDPE) blends with different additives were exposed to various doses of electron beam irradiation. The additives used were styrene-ethylene-butylene-styrene-block copolymers (SEBS), styrene-ethylene-butylene-styrene-block copolymer grafted with maleic anhydride (SEBS-g-MA) and mineral compounds. The structure–property behavior of electron beam irradiated blends was characterized in terms of mechanical, thermal, and electrical resistivity properties. The results indicated that the unirradiated LDPE blends with the different compositions showed improved mechanical properties, thermal and volume resistivity properties than pure LDPE. However, the improvement in properties of unirradiated blends by using SEBS-g-MA was higher than using SEBS copolymer. Further improvement in the mechanical, thermal and electrical properties of the LDPE blends was achieved after electron beam irradiation. The limited oxygen index (LOI) data revealed that the LDPE/SEBS-g-MA/ATH blend was changed from combustible to self-extinguishing material after electron beam irradiation to a dose of 100 kGy. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Ternary blends, based on 70% by weight of polypropylene (PP) with 30% by weight of a dispersed phase, consisting of 15% polyamide-6 (PA6) and 15% of a mixture comprising varying ratios of an unreactive poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer and a reactive maleic anhydride-grafted SEBS-g-MA, were produced via melt blending in a co-rotating twin-screw extruder. TEM revealed the blend containing only non-reactive SEBS to exhibit individual PA6 and SEBS dispersed phases. However, the progressive replacement of SEBS with reactive SEBS-g-MA increased the degree of interfacial reaction between the SEBS and PA6 phases, thus reducing interfacial tension and providing a driving force for encapsulation of the PA6 by the SEBS. Consequently, the dispersed-phase morphology was observed to transform from two separate phases to acorn-type composite particles, then to individual core-shell particles and finally to agglomerates of the core-shell particles. The resultant blends exhibited significant morphology-induced variations in both thermal and mechanical properties. DSC showed that blends in which the diameter of the PA6 particles was reduced to ≤3 μm by the increasing interfacial reaction exhibited fractionated PA6 crystallisation. In general, mechanical testing showed the blends to exhibit inferior low-strain tensile properties (modulus and yield stress) compared to the matrix PP, but superior ultimate tensile properties (stress and strain at break) and impact strength. These changes are discussed with reference to composite models.  相似文献   

19.
Abstract

The mechanical properties of blends of poly (vinyl chloride) (PVC) and poly (styrene-block-(ethylene-co-butadiene)-block–styrene) (SEBS) were investigated using maleic anhydride grafted SEBS (SEBS-g-MAH) as a compatibiliser. The results indicated that addition of a small amount of SEBS-g-MAH during melt blending significantly improved the mechanical properties of PVC/SEBS blends. The impact strength of the compatibilised PVC/SEBS blends was found to reach a maximum of 53·5±2·78 KJ m?2 at room temperature and a maximum of 32·8±1·66 KJ m?2 at ?20°C at an SEBS-g-MAH loading level of 6 phr. The two glass transition temperatures of the components in the blends converged to some degree upon addition of SEBS-g-MAH for compatibilisation. At room temperature the dynamic storage modulus of the compatibilised blends was higher than that of the blends without compatibilisation. The size of the dispersed phase domains in the blends was appreciably reduced on addition of SEBS-g-MAH during melt blending according to scanning electron microscopy. All the above observations revealed that SEBS-g-MAH enhanced the compatibility between PVC and SEBS in the PVC/SEBS blends.  相似文献   

20.
Ke Wang 《Polymer》2007,48(7):2144-2154
In this study, both organoclay and EPDM-g-MA rubber were used to simultaneously improve the toughness and stiffness of polyamide 6 (PA6). We first prepared PA6/EPDM-g-MA/organoclay ternary nanocomposites using melt blending. Then the composites were subjected to traditional injection molding and so-called dynamic packing injection molding. The dispersion of clay, phase morphology, crystallinity and orientation of PA6 as well the mechanical properties were characterized by WAXD, SEM, DSC, 2D-WAXS and mechanical testing, respectively. The effects of clay on phase morphology and mechanical properties of PA6/EPDM-g-MA blends could be summarized as follows: (1) weakening interphase adhesion between PA6 and EPDM-g-MA rubber particles, resulted in increasing of rubber particle size, as the clay and rubber contents are low; (2) preventing coalescence of rubber domains, arisen in decreasing of rubber particle size, as the clay and rubber contents are high; (3) the blocking effect on the overlap of stress volume around rubber particles caused broadening of the brittle-ductile transition region and decrease of toughness, and (4) the effective stress transfer leading a better reinforcement when the interparticle distance is smaller than the critical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号