首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e., cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e., support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e., there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis.  相似文献   

2.
In this paper, a measure of competence based on random classification (MCR) for classifier ensembles is presented. The measure selects dynamically (i.e. for each test example) a subset of classifiers from the ensemble that perform better than a random classifier. Therefore, weak (incompetent) classifiers that would adversely affect the performance of a classification system are eliminated. When all classifiers in the ensemble are evaluated as incompetent, the classification accuracy of the system can be increased by using the random classifier instead. Theoretical justification for using the measure with the majority voting rule is given. Two MCR based systems were developed and their performance was compared against six multiple classifier systems using data sets taken from the UCI Machine Learning Repository and Ludmila Kuncheva Collection. The systems developed had typically the highest classification accuracies regardless of the ensemble type used (homogeneous or heterogeneous).  相似文献   

3.
分类准确性是分类器最重要的性能指标,特征子集选择是提高分类器分类准确性的一种有效方法。现有的特征子集选择方法主要针对静态分类器,缺少动态分类器特征子集选择方面的研究。首先给出具有连续属性的动态朴素贝叶斯网络分类器和动态分类准确性评价标准,在此基础上建立动态朴素贝叶斯网络分类器的特征子集选择方法,并使用真实宏观经济时序数据进行实验与分析。  相似文献   

4.
Epileptic seizures are manifestations of epilepsy. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in diagnostic classification. This paper deals with a novel method of analysis of EEG signals using wavelet transform and classification using artificial neural network (ANN) and logistic regression (LR). Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities and repeated patterns where other signal processing approaches fail or are not as effective. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. In epileptic seizure classification we used lifting-based discrete wavelet transform (LBDWT) as a preprocessing method to increase the computational speed. The proposed algorithm reduces the computational load of those algorithms that were based on classical wavelet transform (CWT). In this study, we introduce two fundamentally different approaches for designing classification models (classifiers) the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on ANN. Logistic regression as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used LBDWT coefficients of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or non-epileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying LBDWT in connection with MLPNN, we obtained novel and reliable classifier architecture. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN based classifier was more accurate than the LR based classifier.  相似文献   

5.
Over a decade ago, Friedman et al. introduced the Tree Augmented Naïve Bayes (TAN) classifier, with experiments indicating that it significantly outperformed Naïve Bayes (NB) in terms of classification accuracy, whereas general Bayesian network (GBN) classifiers performed no better than NB. This paper challenges those claims, using a careful experimental analysis to show that GBN classifiers significantly outperform NB on datasets analyzed, and are comparable to TAN performance. It is found that the poor performance reported by Friedman et al. are not attributable to the GBN per se, but rather to their use of simple empirical frequencies to estimate GBN parameters, whereas basic parameter smoothing (used in their TAN analyses but not their GBN analyses) improves GBN performance significantly. It is concluded that, while GBN classifiers may have some limitations, they deserve greater attention, particularly in domains where insight into classification decisions, as well as good accuracy, is required.  相似文献   

6.
This study deals with the evaluation of accuracy benefits offered by a fuzzy classifier as compared to hard classifiers using satellite imagery for thematic mapping applications. When a crisp classifier approach is adopted to classify moderate resolution data, the presence of mixed coverage pixels implies that the final product will have errors, either of omission or commission, which are not avoidable and are solely due to the spatial resolution of the data. Theoretically, a soft classifier is not affected by such errors, and in principle can produce a classification that is more accurate than any hard classifier. In this study we use the Pareto boundary of optimal solutions as a quantitative method to compare the performance of a fuzzy statistical classifier to the one of two hard classifiers, and to determine the highest accuracy which could be achieved by hard classifiers. As an application, the method is applied to a case of snow mapping from Moderate-Resolution Imaging Spectroradiometer (MODIS) data on two alpine sites, validated with contemporaneous fine-resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. The results for this case study showed that the soft classifier not only outperformed the two crisp classifiers, but also yielded higher accuracy than the maximum theoretical accuracy of any crisp classifier on the study areas. While providing a general assessment framework for the performance of soft classifiers, the results obtained by this inter-comparison exercise showed that soft classifiers can be an effective solution to overcome errors which are intrinsic in the classification of coarse and moderate resolution data.  相似文献   

7.
Classification algorithms are the most commonly used data mining models that are widely used to extract valuable knowledge from huge amounts of data. The criteria used to evaluate the classifiers are mostly accuracy, computational complexity, robustness, scalability, integration, comprehensibility, stability, and interestingness. This study compares the classification of algorithm accuracies, speed (CPU time consumed) and robustness for various datasets and their implementation techniques. The data miner selects the model mainly with respect to classification accuracy; therefore, the performance of each classifier plays a crucial role for selection. Complexity is mostly dominated by the time required for classification. In terms of complexity, the CPU time consumed by each classifier is implied here. The study first discusses the application of certain classification models on multiple datasets in three stages: first, implementing the algorithms on original datasets; second, implementing the algorithms on the same datasets where continuous variables are discretised; and third, implementing the algorithms on the same datasets where principal component analysis is applied. The accuracies and the speed of the results are then compared. The relationship of dataset characteristics and implementation attributes between accuracy and CPU time is also examined and debated. Moreover, a regression model is introduced to show the correlating effect of dataset and implementation conditions on the classifier accuracy and CPU time. Finally, the study addresses the robustness of the classifiers, measured by repetitive experiments on both noisy and cleaned datasets.  相似文献   

8.
特征选择(也称作属性选择)是简化数据表达形式,降低存储要求,提高分类精度和效率的重要途径。实际中遇到的大量的数据集包含着不完整数据。对于不完整数据,构造选择性分类器同样也可以降低存储要求,提高分类精度和效率。因此,对用于不完整数据的选择性分类器的研究是一项重要的研究课题。有鉴于此,提出了一种用于不完整数据的选择性贝叶斯分类器。在12个标准的不完整数据集上的实验结果表明,给出的选择性分类器不仅分类准确率显著高于非常有效地用于不完整数据的RBC分类器,而且分类性能更加稳定。  相似文献   

9.
Remote sensing image classification is a common application of remote sensing images. In order to improve the performance of Remote sensing image classification, multiple classifier combinations are used to classify the Landsat-8 Operational Land Imager (Landsat-8 OLI) images. Some techniques and classifier combination algorithms are investigated. The classifier ensemble consisting of five member classifiers is constructed. The results of every member classifier are evaluated. The voting strategy is experimented to combine the classification results of the member classifier. The results show that all the classifiers have different performances and the multiple classifier combination provides better performance than a single classifier, and achieves higher overall accuracy of classification. The experiment shows that the multiple classifier combination using producer’s accuracy as voting-weight (MCCmod2 and MCCmod3) present higher classification accuracy than the algorithm using overall accuracy as voting-weight (MCCmod1).And the multiple classifier combinations using different voting-weights affected the classification result in different land-cover types. The multiple classifier combination algorithm presented in this article using voting-weight based on the accuracy of multiple classifier may have stability problems, which need to be addressed in future studies.  相似文献   

10.
This paper describes a performance evaluation study in which some efficient classifiers are tested in handwritten digit recognition. The evaluated classifiers include a statistical classifier (modified quadratic discriminant function, MQDF), three neural classifiers, and an LVQ (learning vector quantization) classifier. They are efficient in that high accuracies can be achieved at moderate memory space and computation cost. The performance is measured in terms of classification accuracy, sensitivity to training sample size, ambiguity rejection, and outlier resistance. The outlier resistance of neural classifiers is enhanced by training with synthesized outlier data. The classifiers are tested on a large data set extracted from NIST SD19. As results, the test accuracies of the evaluated classifiers are comparable to or higher than those of the nearest neighbor (1-NN) rule and regularized discriminant analysis (RDA). It is shown that neural classifiers are more susceptible to small sample size than MQDF, although they yield higher accuracies on large sample size. As a neural classifier, the polynomial classifier (PC) gives the highest accuracy and performs best in ambiguity rejection. On the other hand, MQDF is superior in outlier rejection even though it is not trained with outlier data. The results indicate that pattern classifiers have complementary advantages and they should be appropriately combined to achieve higher performance. Received: July 18, 2001 / Accepted: September 28, 2001  相似文献   

11.
遥感图像分类是遥感图像研究的主要内容之一,分类精度高低直接关系到遥感数据的可靠性和实用性。多分类器系统可以提高单分类器分类的精度,但往往要求组成的子分类器分类误差相互独立,子分类器选择困难。支持向量机是新发展起来的一种非参数分类器,其分类原理和传统的基于统计的分类方法不同,表现出一定的独立性。为此本文尝试基于支持向量机和目前使用最广泛的最大似然法,构建一个性能高效且组合方式简单的复合分类器(称为遥感影像分类自校正方法)。同时,为了验证该分类器的性能,在北京市2006年4月27日的SPOT2图像上选择了一个研究区,分别利用最大似然法、支持向量机法和分类自校正方法进行分类对比试验。结果显示分类自校正方法的总体分类精度最高,比最大似然法和支持向量机法分别提高了4.35%和6.6%,而且各种地物类型的分类精度相对最大似然和支持向量机法都有提高。本文提出的分类自校正方法是一种性能高效且操作简单的分类方法。  相似文献   

12.
Vector quantization technique for nonparametric classifier design   总被引:1,自引:0,他引:1  
An effective data reduction technique based on vector quantization is introduced for nonparametric classifier design. Two new nonparametric classifiers are developed, and their performance is evaluated using various examples. The new methods maintain a classification accuracy that is competitive with that of classical methods but, at the same time, yields very high data reduction rates  相似文献   

13.
Several studies have demonstrated the superior performance of ensemble classification algorithms, whereby multiple member classifiers are combined into one aggregated and powerful classification model, over single models. In this paper, two rotation-based ensemble classifiers are proposed as modeling techniques for customer churn prediction. In Rotation Forests, feature extraction is applied to feature subsets in order to rotate the input data for training base classifiers, while RotBoost combines Rotation Forest with AdaBoost. In an experimental validation based on data sets from four real-life customer churn prediction projects, Rotation Forest and RotBoost are compared to a set of well-known benchmark classifiers. Moreover, variations of Rotation Forest and RotBoost are compared, implementing three alternative feature extraction algorithms: principal component analysis (PCA), independent component analysis (ICA) and sparse random projections (SRP). The performance of rotation-based ensemble classifier is found to depend upon: (i) the performance criterion used to measure classification performance, and (ii) the implemented feature extraction algorithm. In terms of accuracy, RotBoost outperforms Rotation Forest, but none of the considered variations offers a clear advantage over the benchmark algorithms. However, in terms of AUC and top-decile lift, results clearly demonstrate the competitive performance of Rotation Forests compared to the benchmark algorithms. Moreover, ICA-based Rotation Forests outperform all other considered classifiers and are therefore recommended as a well-suited alternative classification technique for the prediction of customer churn that allows for improved marketing decision making.  相似文献   

14.
Multiple classifier systems (MCS) are attracting increasing interest in the field of pattern recognition and machine learning. Recently, MCS are also being introduced in the remote sensing field where the importance of classifier diversity for image classification problems has not been examined. In this article, Satellite Pour l'Observation de la Terre (SPOT) IV panchromatic and multispectral satellite images are classified into six land cover classes using five base classifiers: contextual classifier, k-nearest neighbour classifier, Mahalanobis classifier, maximum likelihood classifier and minimum distance classifier. The five base classifiers are trained with the same feature sets throughout the experiments and a posteriori probability, derived from the confusion matrix of these base classifiers, is applied to five Bayesian decision rules (product rule, sum rule, maximum rule, minimum rule and median rule) for constructing different combinations of classifier ensembles. The performance of these classifier ensembles is evaluated for overall accuracy and kappa statistics. Three statistical tests, the McNemar's test, the Cochran's Q test and the Looney's F-test, are used to examine the diversity of the classification results of the base classifiers compared to the results of the classifier ensembles. The experimental comparison reveals that (a) significant diversity amongst the base classifiers cannot enhance the performance of classifier ensembles; (b) accuracy improvement of classifier ensembles can only be found by using base classifiers with similar and low accuracy; (c) increasing the number of base classifiers cannot improve the overall accuracy of the MCS and (d) none of the Bayesian decision rules outperforms the others.  相似文献   

15.
Image classification is a core field in the research area of image processing and computer vision in which vehicle classification is a critical domain. The purpose of vehicle categorization is to formulate a compact system to assist in real-world problems and applications such as security, traffic analysis, and self-driving and autonomous vehicles. The recent revolution in the field of machine learning and artificial intelligence has provided an immense amount of support for image processing related problems and has overtaken the conventional, and handcrafted means of solving image analysis problems. In this paper, a combination of pre-trained CNN GoogleNet and a nature-inspired problem optimization scheme, particle swarm optimization (PSO), was employed for autonomous vehicle classification. The model was trained on a vehicle image dataset obtained from Kaggle that has been suitably augmented. The trained model was classified using several classifiers; however, the Cubic SVM (CSVM) classifier was found to outperform the others in both time consumption and accuracy (94.8%). The results obtained from empirical evaluations and statistical tests reveal that the model itself has shown to outperform the other related models not only in terms of accuracy (94.8%) but also in terms of training time (82.7 s) and speed prediction (380 obs/sec).  相似文献   

16.
张丹  杨斌  张瑞禹 《遥感信息》2009,(5):41-43,55
在遥感影像分类应用中,不同分类器的分类精度是不同的,而同一分类器对不同类别的分类精度也是不相同的。多分类器结合的思想就是利用现有分类器之间的互补性,通过适当的方法将不同的分类器之间进行优势互补,往往可以得到比单个分类器更好的分类结果。本文研究了如何在Matlab下采用最短距离分类器、贝叶斯分类器、BP神经网络分类器对影像进行分类,并采用投票法进行多种分类器结合的遥感影像分类,最后进行分类后处理。实验结果表明多分类器结合的遥感影像分类比单一分类器分类的精度高。  相似文献   

17.
This paper presents the results of handwritten digit recognition on well-known image databases using state-of-the-art feature extraction and classification techniques. The tested databases are CENPARMI, CEDAR, and MNIST. On the test data set of each database, 80 recognition accuracies are given by combining eight classifiers with ten feature vectors. The features include chaincode feature, gradient feature, profile structure feature, and peripheral direction contributivity. The gradient feature is extracted from either binary image or gray-scale image. The classifiers include the k-nearest neighbor classifier, three neural classifiers, a learning vector quantization classifier, a discriminative learning quadratic discriminant function (DLQDF) classifier, and two support vector classifiers (SVCs). All the classifiers and feature vectors give high recognition accuracies. Relatively, the chaincode feature and the gradient feature show advantage over other features, and the profile structure feature shows efficiency as a complementary feature. The SVC with RBF kernel (SVC-rbf) gives the highest accuracy in most cases but is extremely expensive in storage and computation. Among the non-SV classifiers, the polynomial classifier and DLQDF give the highest accuracies. The results of non-SV classifiers are competitive to the best ones previously reported on the same databases.  相似文献   

18.
This work presents the enhancement and application of a fuzzy classification technique for automated grading of fish products. Common features inherent in grading-type data and their specific requirements in processing for classification are identified. A fuzzy classifier with a four-level hierarchy is developed based on the “generalized K-nearest neighbor rules”. Both conventional and fuzzy classifiers are examined using a realistic set of herring roe data (collected from the fish processing industry) to compare the classification performance in terms of accuracy and computational cost. The classification results show that the generalized fuzzy classifier provides the best accuracy at 89%. The grading system can be tuned through two parameters-the threshold of fuzziness and the cost weighting of error types-to achieve higher classification accuracy. An optimization scheme is also incorporated into the system for automatic determination of these parameter values with respect to a specific optimization function that is based on process renditions, including the product price and labor cost. Since the primary common features are accommodated in the classification algorithm, the method presented here provides a general capability for both grading and sorting-type problems in food processing  相似文献   

19.
ObjectiveManual evaluation of machine learning algorithms and selection of a suitable classifier from the list of available candidate classifiers, is highly time consuming and challenging task. If the selection is not carefully and accurately done, the resulting classification model will not be able to produce the expected performance results. In this study, we present an accurate multi-criteria decision making methodology (AMD) which empirically evaluates and ranks classifiers’ and allow end users or experts to choose the top ranked classifier for their applications to learn and build classification models for them.Methods and materialExisting classifiers performance analysis and recommendation methodologies lack (a) appropriate method for suitable evaluation criteria selection, (b) relative consistent weighting mechanism, (c) fitness assessment of the classifiers’ performances, and (d) satisfaction of various constraints during the analysis process. To assist machine learning practitioners in the selection of suitable classifier(s), AMD methodology is proposed that presents an expert group-based criteria selection method, relative consistent weighting scheme, a new ranking method, called optimum performance ranking criteria, based on multiple evaluation metrics, statistical significance and fitness assessment functions, and implicit and explicit constraints satisfaction at the time of analysis. For ranking the classifiers performance, the proposed ranking method integrates Wgt.Avg.F-score, CPUTimeTesting, CPUTimeTraining, and Consistency measures using the technique for order performance by similarity to ideal solution (TOPSIS). The final relative closeness score produced by TOPSIS, is ranked and the practitioners select the best performance (top-ranked) classifier for their problems in-hand.FindingsBased on the extensive experiments performed on 15 publically available UCI and OpenML datasets using 35 classification algorithms from heterogeneous families of classifiers, an average Spearman's rank correlation coefficient of 0.98 is observed. Similarly, the AMD method has showed improved performance of 0.98 average Spearman's rank correlation coefficient as compared to 0.83 and 0.045 correlation coefficient of the state-of-the-art ranking methods, performance of algorithms (PAlg) and adjusted ratio of ratio (ARR).Conclusion and implicationThe evaluation, empirical analysis of results and comparison with state-of-the-art methods demonstrate the feasibility of AMD methodology, especially the selection and weighting of right evaluation criteria, accurate ranking and selection of optimum performance classifier(s) for the user's application's data in hand. AMD reduces expert's time and efforts and improves system performance by designing suitable classifier recommended by AMD methodology.  相似文献   

20.
Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature.While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC).Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases.RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号