首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this work we evaluated ethanol production from enzymatic hydrolysis of sugarcane bagasse. Two pretreatments agents, lime and alkaline hydrogen peroxide, were compared in their performance to improve the susceptibility of bagasse to enzymatic action. Mild conditions of temperature, pressure and absence of acids were chosen to diminish costs and to avoid sugars degradation and consequent inhibitors formation. The bagasse was used as it comes from the sugar/ethanol industries, without grinding or sieving, and hydrolysis was performed with low enzymes loading (3.50 FPU g−1 dry pretreated biomass of cellulase and 1.00 CBU g−1 dry pretreated biomass of ??-glucosidase). The pretreatment with alkaline hydrogen peroxide led to the higher glucose yield: 691 mg g−1 of glucose for pretreated bagasse after hydrolysis of bagasse pretreated for 1 h at 25 °C with 7.35% (v/v) of peroxide. Fermentation of the hydrolyzates from the two pretreatments were carried out and compared with fermentation of a glucose solution. Ethanol yields from the hydrolyzates were similar to that obtained by fermentation of the glucose solution. Although the preliminary results obtained in this work are promising for both pretreatments considered, reflecting their potential for application, further studies, considering higher biomass concentrations and economic aspects should be performed before extending the conclusions to an industrial process.  相似文献   

2.
In this work, a carbohydrate-rich microalga, Chlorella vulgaris ESP6, was grown photoautotrophically to fix the CO2. The resulting microalgal biomass was hydrolyzed by acid or alkaline/enzymatic treatment and was then used for biohydrogen production with Clostridium butyricum CGS5. The C. vulgaris biomass could be effectively hydrolyzed by acid pretreatment while similar hydrolysis efficiency was achieved by combination of alkaline pretreatment and enzymatic hydrolysis. The biomass of C. vulgaris ESP6 containing a carbohydrate content of 57% (dry weight basis) was efficiently hydrolyzed by acid treatment with 1.5% HCl, giving a reducing sugars (RS) yield of nearly 100%. C. butyricum CGS5 could utilize RS from C. vulgaris ESP6 biomass to produce hydrogen without any additional organic carbon sources. The optimal conditions for hydrogen production were 37 °C and a microalgal hydrolysate loading of 9 g RS/L with pH-controlled at 5.5. Under the optimal conditions, the cumulative H2 production, H2 production rate, and H2 yield were 1476 ml/L, 246 ml/L/h, and 1.15 mol/mol RS, respectively. The results demonstrate that the C. vulgaris biomass has the potential to serve as effective feedstock for dark fermentative H2 production.  相似文献   

3.
Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg−1 flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation.  相似文献   

4.
The conversion of ethanol from paper sludge using the separate hydrolysis and fermentation (SHF) process with cellulase and Saccharomyces cerevisiae GIM-2 were investigated in this paper. Optimization strategy based on statistical experimental designs was employed to enhance degree of saccharification by enzymatic hydrolysis of paper sludge. Based on the Plackett-Burman design, hydrolysis time, substrate concentration and cellulase dosage were selected as the most significant variable on the degree of saccharification. Subsequently, the optimum combination of the selected factors was investigated by a Box-Behnken approach. A mathematical model was developed to show the effects of each factor and their combinatorial interactions on the degree of saccharification. The optimal conditions were hydrolysis time 82.7 h, substrate concentration 40.8 g L−1 and cellulase dosage 18.1 FPU g−1 substrate, and a degree of saccharification of 82.1% can be achieved. When hydrolysate was further fermented with S. cerevisiae GIM-2, the conversion rate of sugar to ethanol was 34.2% and the ethanol yield was 190 g kg−1 of dry paper sludge, corresponding to an overall conversion yield of 56.3% of the available carbohydrates on the initial substrate. The results derived from this study indicate that the response surface methodology is a useful tool for optimizing the hydrolysis conditions to converse paper sludge to ethanol.  相似文献   

5.
An acid-free organosolv process was proposed to overcome the problems caused by acid catalyst in organosolv process, thereby producing ethanol from Liriodendron tulipifera effectively. Although relative lignin contents were above 20%, enzymatic conversion increased significantly to 65% at all conditions, and thus correlation between lignin and enzymatic conversion could not be explained using relative lignin content. Enzymatic conversion increased significantly above 65% regardless of temperature, which suggests the organosolv pretreatment with sodium hydroxide can be performed at lower temperature. FE-SEM showed that the process made the structure loose and broke down biomass through lignin dissolution. Wrinkle formation by alkaline swelling was also observed and it might increase surface area. Although pore-volume increased slightly, it was not the sole key factor for the organosolv pretreatment with sodium hydroxide. Increase in surface area and enzyme adsorption enhanced the enzymatic hydrolysis. Ethanol of 96% could be produced theoretically and it suggested that the acid-free organosolv process was an effective pretreatment method for bioethanol production from L. tulipifera.  相似文献   

6.
Production of bioethanol by the conversion of lignocellulosic waste has attracted much interest in recent years, because of its low cost and great potential availability. The pretreatment process is important for increasing the enzymatic digestibility of lignocellulosic materials. Enzymatic conversion with freeze pretreatment of rice straw was evaluated in this study. The freeze pretreatment was found to significantly increase the enzyme digestibility of rice straw from 48% to 84%. According to the results, enzymatic hydrolysis of unpretreated rice straw with 150 U cellulase and 100 U xylanase for 48 h yielded 226.77 g kg−1 and 93.84 g kg−1 substrate-reducing sugars respectively. However, the reducing sugar yields from freeze pretreatment under the same conditions were 417.27 g kg−1 and 138.77 g kg−1 substrate, respectively. In addition, hydrolyzates analysis showed that the highest glucose yield obtained during the enzymatic hydrolysis step in the present study was 371.91 g kg−1 of dry rice straw, following pretreatment. Therefore, the enhanced enzymatic conversion with freeze pretreatment of rice straw was observed in this study. This indicated that freeze pretreatment was highly effective for enzymatic hydrolysis and low environmental impact.  相似文献   

7.
Biomass pretreatment is essential to overcome recalcitrance of lignocellulose for ethanol production. In the present study we pretreated giant reed (Arundo donax L.), a perennial, rhizomatous lignocellulosic grass with dilute oxalic acid. The effects of temperature (170-190 °C), acid loading (2-10% w/w) and reaction time (15-40 min) were handled as a single parameter, combined severity. We explored the change in hemicellulose, cellulose and lignin composition following pretreatment and glucan conversion after enzymatic hydrolysis of the solid residue. Two different yeast strains, Scheffersomyces (Pichia) stipitis CBS 6054, which is a native xylose and cellobiose fermenter, and Saccharomyces carlsbergensis FPL-450, which does not ferment xylose or cellobiose, were used along with commercial cellulolytic enzymes in simultaneous saccharification and fermentation (SSF). S. carlsbergensis attained a maximum ethanol concentration of 15.9 g/l after 48 h at pH 5.0, while S. stipitis, at the same condition, took 96 h to reach a similar ethanol value; increasing the pH to 6.0 reduced the S. stipitis lag phase and attained 18.0 g/l of ethanol within 72 h.  相似文献   

8.
To meet the increasing need for bioenergy several raw materials have to be considered for the production of e.g. bioethanol and biogas. In this study, three lignocellulosic raw materials were studied, i.e. (1) winter rye straw (Secale cereale L), (2) oilseed rape straw (Brassica napus L.) and (3) faba bean straw (Viciafaba L.). Their composition with regard to cellulose, hemicellulose, lignin, extractives and ash was evaluated, as well as their potential as raw materials for ethanol and biogas production. The materials were pretreated by wet oxidation using parameters previously found to be optimal for pretreatment of corn stover (195 °C, 15 min, 2 g l−1 Na2CO3 and 12 bar oxygen). It was shown that pretreatment was necessary for ethanol production from all raw materials and gave increased biogas yield from winter rye straw. Neither biogas productivity nor yield from oilseed rape straw or faba bean straw was significantly affected by pretreatment. Ethanol was produced by the yeast Saccharomyces cerevisiae during simultaneous enzymatic hydrolysis of the solid material after wet oxidation with yields of 66%, 70% and 52% of theoretical for winter rye, oilseed rape and faba bean straw, respectively. Methane was produced with yields of 0.36, 0.42 and 0.44 l g−1 volatile solids for winter rye, oilseed rape and faba bean straw, respectively, without pretreatment of the materials. However, biogas productivity was low and it took over 50 days to reach the final yield. It could be concluded that all three materials are possible raw materials for either biogas or ethanol production; however, improvement of biogas productivity or ethanol yield is necessary before an economical process can be achieved.  相似文献   

9.
Bioethanol production from lignocellulosic biomass for use as an alternative energy resource has attracted increasing interest, but short-term commercialization will require several technologies such as low cost feedstock. The huge amount of oil palm empty fruit bunches (EFB) generated from palm oil industries can be used as a raw material for cheap, renewable feedstock for further commercial exploitation. Using a pilot-scale bioethanol plant, this study investigated the possibility of utilizing oil palm empty fruit bunches as a renewable resource. All bioethanol production processes such as pretreatment, hydrolysis, fermentation, and purification were constructed as automatically controlled integrated processes. The mass balance was calculated from operational results. Changhae ethanol multiexplosion pretreatment with sodium hydroxide was conducted to improve the enzymatic hydrolysis process, and a separate hydrolysis and fermentation process was used for producing bioethanol at an 83.6% ethanol conversion rate. In order to purify the ethanol, a distillation and dehydration facility was operated. Distillation and dehydration efficiencies were 98.9% and 99.2%, respectively. The material balance could be calculated using results obtained from the operation of the pilot-scale bioethanol plant. As a result, it was possible to produce 144.4 kg anhydrous ethanol (99.7 wt%) from 1000 kg EFB. This result constitutes a significant contribution to the feasibility of bioethanol production from lignocellulosic biomass and justifies the pilot plant's scale-up to a commercial-scale plant.  相似文献   

10.
Lignocellulosic biomass can be utilized to produce ethanol, a promising alternative energy source produced through fermentation of sugars. However, in order to achieve high sugar and ethanol yields, the lignocellulosic material must be pretreated before the enzymatic hydrolysis and fermentation. Dilute acid pretreatment, using SO2, is one of the most promising methods of pretreatment for softwood and agricultural residues. However, handling the high acidity of the slurry obtained from pretreatment and difficulty in recycling/degradation of the impregnating agent are some of the drawbacks of the dilute acid processes. In the present study the influence of utilization of a weak organic acid (lactic acid), as impregnating agent, on the sugar yield from pretreatment, with and without addition of SO2, was investigated. The efficiency of pretreatment was assessed by enzymatic hydrolysis of the slurry obtained by pretreatment, using sugarcane bagasse and spruce, stored for one and two months in the presence of lactic acid separately, as feedstocks. Pretreatment of bagasse after storage with 0.5% lactic acid resulted in an overall glucose yield, i.e. after enzymatic hydrolysis, of 79% of theoretical based on the amount available in the raw material. This was as good as pretreatment using SO2 as impregnating agent. However, storage of spruce with lactic acid before pretreatment, with and without addition of SO2, was not efficient and resulted in lower sugar yields than pretreatment using SO2 only.  相似文献   

11.
Cryptococcus curvatus has great potential in fermenting unconditioned hydrolysates of sweet sorghum bagasse. With hydrolysates obtained by enzymatic hydrolysis of the solid pretreated by microwave with lime, the maximal yeast cell dry weight and lipid content were 10.83 g/l and 73.26%, respectively. For hydrolysates obtained in the same way but without lime, these two parameters were 15.50 g/l and 63.98%, respectively. During yeast fermentation, glucose and xylose were consumed simultaneously while cellobiose was released from the residual bagasse. The presence of lime, on one hand, made cellulose more accessible to enzymes as evidenced by higher total reducing sugar release compared to that without during enzymatic hydrolysis step; on the other hand, it caused the degradation of sugars to non-sugar chemicals during pretreatment step. As a result, higher lipid yield of 0.11 g/g bagasse or 0.65 ton/hectare of land was achieved from the pathway of microwave pretreatment and enzymatic hydrolysis while 0.09 g/g bagasse or 0.51 ton/hectare of land was attained from the process of lime-assisted microwave pretreatment followed by the same enzymatic saccharification.  相似文献   

12.
Corn stover is one of the most promising lignocellulosic biomass that can be utilized for producing 1,3-propanediol and 2,3-butanediol. The pretreatment and enzymatic hydrolysis steps are essential for the bioconversion of lignocellulosic biomass to diols. For optimizing the pretreatment step, temperature, time, and NaOH concentration were evaluated based on total sugar recovery. Enzymatic hydrolysis for cellulose and hemicellulose were investigated at different solid-to-liquid ratios. The optimum conditions were found to be alkaline pretreatment with 0.25 mol dm−3 NaOH for 1 h at 60 °C followed by enzymatic hydrolysis at 50 °C for 48 h, with a solid slurry concentration of 100 g dm−3. Under these conditions, conversion rates of 92.55% and 78.82% were obtained from glucan and xylan, respectively. Diol production from fermentable sugars was 14.8 g dm−3, with a conversion yield and productivity of 0.46 g g−1, and 0.98 g dm−3 h−1, respectively. Our results are similar for diol production obtained using pure sugars under the same conditions. Therefore, mild alkaline pretreatment of corn stover facilitates delignification, significantly improving the rate of enzymatic saccharification and sugar recovery.  相似文献   

13.
An environmentally friendly pretreatment process was developed to fractionate cellulose, hemicellulose and lignin from almond (Prunus dulcis) shells, consisting of hot water pretreatment (HWP) coupled with organic solvent (organosolv) pretreatment of water/ethanol (OWEP). This integrated pretreatment process proved more effective on the basis of yield of fermentable sugar and lignin separation compared with HWP alone, dilute acid pretreatment (DAP), ammonia pretreatment (AP), lime pretreatment LP, organosolv water/ethanol pretreatment (OWEP), and organosolv water/acetone pretreatment (OWAP). In the coupled hot water-organosolv process, hemicellulose sugars were recovered in the first residual liquid while varying amounts of cellulose was retained in the residual solid. The lignin fraction was obtained by simply adjusting the pH from the second liquid. The optimal two-stage process consisted of first HWP stage at 195 °C for 30 min, resulting in wglucose = 95.4% glucose recovery yield and wxylose = 92.2% xylose removal. The second organosolv OWEP stage was operated at 195 °C for 20 min, in ethanol in water mixtures of <phi>ethanol = 50% and resulted in nearly wglucose = 100% glucose recovery yield, wxylose = 90% xylose and wlignin = 61% lignin removal. After enzymatic hydrolysis, glucose yield was up to wglucose = 95%, compared to 61% yield from untreated almond. Images obtained via scanning electron microscopy (SEM) highlighted the differences in almond structure from the varying pretreatment methods during biomass fractionation.  相似文献   

14.
The effect of culture parameters on hydrogen production using strain GHL15 in batch culture was investigated. The strain belongs to the genus Thermoanaerobacter with 98.9% similarity to Thermoanaerobacter yonseiensis and 98.5% to Thermoanaerobacter keratinophilus with a temperature optimum of 65–70 °C and a pH optimum of 6–7. The strain metabolizes various pentoses, hexoses, and disaccharides to acetate, ethanol, hydrogen, and carbon dioxide. However substrate inhibition was observed above 10 mM glucose concentration. Maximum hydrogen yields on glucose were 3.1 mol H2 mol−1 glucose at very low partial pressure of hydrogen. Hydrogen production from various lignocellulosic biomass hydrolysates was investigated in batch culture. Various pretreatment methods were examined including acid, base, and enzymatic (Celluclast® and Novozyme 188) hydrolysis. Maximum hydrogen production (5.8–6.0 mmol H2 g−1 dw) was observed from Whatman paper (cellulose) hydrolysates although less hydrogen was produced by hydrolysates from other examined lignocellulosic materials (maximally 4.83 mmol H2 g−1 dw of grass hydrolysate). The hydrogen yields from all lignocellulosic hydrolysates were improved by acid and alkaline pretreatments, with maximum yields on grass, 7.6 mmol H2 g−1 dw.  相似文献   

15.
To investigate the bioethanol production from sweet potato, the saccharification and fermentation conditions of co-immobilization of saccharolytic molds (Aspergillus oryzae and Monascus purpureus) with Saccharomyces cerevisiae were analyzed. The immobilized yeast cells showed that at 10% glucose YPD (yeast extract peptone dextrose) the maximum fermentation rate was 80.23%. Viability of yeasts cells were 95.70% at a final ethanol concentration of 6%. Immobilization enhanced the ethanol tolerance of yeast cells. In co-immobilization of S. cerevisiae with A. oryzae or M. purpureus, the optimal hardening time of gel beads was between 15 and 60 min. Bioethanol production was 3.05-3.17% (v v−1) and the YE/s (yield of ethanol production/starch consumption) was 0.31-0.37 at pH 4, 30 °C and 150 rpm during 13 days fermentation period. Co-immobilization of S. cerevisiae with a mixed cultures of A. oryzae and M. purpureus at a ratio of 2:1, the bioethanol production was 3.84% (v v−1), and the YE/s was 0.39 for a 11 days incubation. However a ratio of A. oryzae and M. purpureus at 1:2 resulted a bioethanol production rate of 4.08% (v v−1), and a YE/s of 0.41 after 9 days of fermentation.  相似文献   

16.
Corn cob is a promising hydrogen fermentation substrate, not only because of its abundant and low cost, but also because of its high cellulose and hemicellulose content. However, little information is available on the use of corn cob as a feedstock for hydrogen production. In this study, corn cob was hydrolyzed by cellulase after acid steam-explosion, alkali soaking, or steam-explosion pretreatment. The liquid products of pretreatment and the enzymatic hydrolysates were then used as carbon sources for hydrogen production by Clostridium hydrogeniproducens HR-1. Pretreatment followed by enzymatic hydrolysis yielded 720, 670, and 530 mg reducing sugars/g corn cob, and the hydrogen yield from corn cob reached 119, 100, and 83 ml H2/g corn cob, which is 55.9%, 46.7%, and 38.8% of the theoretical hydrogen yield from corn cob using C. hydrogeniproducens HR-1, respectively.  相似文献   

17.
The conversion of lignocellulosic biomass to ethanol involves three major unit operations such as pretreatment, hydrolysis and fermentation. Each unit operation involves processing of biomass with changes in its structure, and release of fermentable and other sugars and lignin degrading compounds. The evaluation of biomass conversion processes through material balance is fundamentally crucial in its commercialization. This gives an idea about the transfer of biomass from one phase to another and hence eventually of the efficiency of the total process. In the present study, material balance has been evaluated in each unit operations for sorghum biomass to ethanol conversion. An account of carbohydrates in the native as well as pretreated sorghum biomass, the release of fermentable sugars and the conversion of sugars to ethanol was maintained and analysed. Ethanol yield of 91.94 g per kg sorghum was achieved without any detoxification and washing of pretreated biomass after mild acid pretreatment followed by enzymatic hydrolysis and fermentation.  相似文献   

18.
Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and β-glucosidase enzymes were first investigated and their best performance obtained at 45 °C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g?1 sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g?1) and untreated straw (0.46 g g?1). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L?1 resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36–0.43 g g?1 ethanol, 0.11–0.17 g g?1 biomass, and 0.04–0.06 g g?1 glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37–0.45 g g?1 ethanol, 0.04–0.10 g g?1 biomass and 0.05–0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05–0.09 g g?1. This fungus had ethanol, biomass and glycerol yields of 0.33–0.41, 0.06–0.12, and 0.03–0.04 g g?1, respectively.  相似文献   

19.
Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under anaerobic conditions. During fermentation, soluble and insoluble carbohydrates were hydrolysed by the lignocellulolytic system of F. oxysporum. Mixed substrate fermentation using PWS and corn cobs (CC) in the ratio 1:2 was used to obtain an enzyme mixture with high cellulolytic and hemicellulolytic activities. Under these conditions, activities as high as 34300, 9100, 326, 24, 169, 27 and 254 U dm−3 of xylanase, endoglucanase, ??-glucosidase, arabinofuranosidase, avicelase, feruloyl esterase and acetyl esterase, respectively, were obtained. The replacement of the enzyme production phase of F. oxysporum by the addition of commercially available enzymes Celluclast® 1.5 L FG and Novozym® 188 in 3:1 ratio for the treatment of PWS, resulted in a 3-fold increase in the volumetric ethanol productivity without increasing the ethanol production significantly. By direct bioconversion of 110 kg m−3 dry matter of PWS, ethanol concentration (4.9 kg m−3) and yield (40 g kg−1 of PWS) were similarly obtained by F. oxysporum and the mixed culture, while productivity rates as high as 34 g m−3 h−1 and 108 g m−3 h−1 were obtained by F. oxysporum and the mixed culture, respectively.  相似文献   

20.
Hydrogen production from Arthrospira (Spirulina) platensis wet biomass through heterofermentation by the [FeFe] hydrogenase of hydrogenogens (hydrogen-producing bacteria) and autofermentation by the [NiFe] hydrogenase of Arthrospira platensis was discussed under dark anaerobic conditions. In heterofermentation, wet cyanobacterial biomass without pretreatment was hardly utilized by hydrogenogens for hydrogen production. But the carbohydrates in cyanobacterial cells released after cell wall disruption were effectively utilized by hydrogenogens for hydrogen production. Wet cyanobacterial biomass was pretreated with boiling and bead milling, ultrasonication, and ultrasonication and enzymatic hydrolysis. Wet cyanobacterial biomass pretreated with ultrasonication and enzymatic hydrolysis achieved the maximum reducing sugar yield of 0.407 g/g-DW (83.0% of the theoretical reducing sugar yield). Different concentrations (10 g/l to 40 g/l) of pretreated wet cyanobacterial biomass were used as substrate to produce fermentative hydrogen by hydrogenogens, which were domesticated with the pretreated wet cyanobacterial biomass as carbon source. The maximum hydrogen yield of 92.0 ml H2/g-DW was obtained at 20 g/l of wet cyanobacterial biomass. The main soluble metabolite products (SMPs) in the residual solutions from heterofermentation were acetate and butyrate. In autofermentation, hydrogen yield decreased from 51.4 ml H2/g-DW to 11.0 ml H2/g-DW with increasing substrate concentration from 1 g/l to 20 g/l. The main SMPs in the residual solutions from autofermentation were acetate and ethanol. The hydrogen production peak rate and hydrogen yield at 20 g/l of wet cyanobacterial biomass in heterofermentation showed 110- and 8.4-fold increases, respectively, relative to those in autofementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号