首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Using a semiconductor as the substrate to a molecular organic layer, penetration of metal contacts can be clearly identified by the study of electronic charge transport through the layer. A series of monolayers of saturated hydrocarbon molecules with varying lengths is assembled on Si or GaAs and the junctions resulting after further electronic contact is made by liquid Hg, indirect metal evaporation, and a “ready‐made” metal pad are measured. In contrast to tunneling characteristics, which are ambiguous regarding contact penetration, the semiconductor surface barrier is very sensitive to any direct contact with a metal. With the organic monolayer intact, a metal–insulator–semiconductor (MIS) structure results. If metal penetrated the monolayer, the junction behaves as a metal–semiconductor (MS) structure. By comparing a molecule‐free interface (MS junction) with a molecularly modified one (presumably MIS), possible metal penetration is identified. The major indicators are the semiconductor electronic transport barrier height, extracted from the junction transport characteristics, and the photovoltage. The approach does not require a series of different monolayers and data analysis is quite straightforward, helping to identify non‐invasive ways to make electronic contact to soft matter.  相似文献   

2.
本文介绍了一种借助于扫描隧道显微镜的空间高分辨能力探测单个分子取向的方法.利用这种方法,我们研究了以下四种体系中的分子取向二维C 60分子阵列;C 60(111)多层膜表面;吸附在Si(111) (7×7)表面的C 60单分子;Au(111)表面的硫醇自组装单分子层膜.结合局域密度近似方法理论计算,我们确定了以上体系中的分子取向.  相似文献   

3.
Addressable molecular junctions based on a thiol-functionalized oligo (3-methylthiophene) derivative incorporated with pyridine unit were fabricated using polymer stamp-printing method. The junction charge transport was measured from 95 to 299 K under both dark and light conditions. Asymmetric current–voltage characteristics with temperature, light, and bias-direction dependence were observed. Simmons tunneling combined with hopping play dominant roles at low bias under both dark and light. The thermionic and Poole–Frankel emissions are also found to affect the charge transport in some cases. Based on the density functional theory in conjunction with the non-equilibrium Green's function method, we investigated the transport properties of a series of single-molecule junctions with different molecular structures, in which negative differential resistance was observed. Density functional theory calculation and transmission spectrum show that the tunneling barrier may depend on the relative energetic position of the frontier molecular orbitals with respect to the metal Fermi level under the effects of bias and temperature.  相似文献   

4.
A monolayer of inorganic nanoparticles and a monolayer of organic molecules have been electrostatically assembled in sequence. Such assemblies or organizations exhibit electrical rectification. When the sequence of the organization is reversed, the direction of rectification becomes opposite. In both n‐type ZnO/organic and organic/n‐ZnO assemblies, electron flow is favorable from the n‐ZnO nanoparticle to the (electron‐accepting) organic molecule. While the individual components do not show any rectification, substitutes of the organic molecule tune electrical rectification. Junctions between a p‐type ZnO nanoparticle and an electron‐donating metal phthalocyanine favor current flow in the nanoparticle‐to‐phthalocyanine direction. The rectification in a junction between a nanoparticle and an organic molecule is due to the parity between free carriers in the former component and the type of carrier‐accepting nature in the latter one. By observing electrical rectification with the tip of a scanning tunneling microscope, organic/inorganic hybrid nanodiodes or rectifiers on the molecular/nanoscale have been established.  相似文献   

5.
The metal/organic monolayer interface in molecular electronic devices   总被引:2,自引:0,他引:2  
The metal/molecules/metal is the basic device used to measure the electronic properties of organic molecules envisioned as the key components in molecular-scale devices (molecular diode, molecular wire, molecular memory, etc.). This review paper describes the main techniques used to fabricate a metal/molecules/metal device (or more generally electrode/molecules/electrode junctions, with electrodes made of metal or semiconductor). We discuss several problems encountered for the metallization of organic monolayers. The organic/electrode interface plays a strong role in the electronic properties of these molecular devices. We review some results on the relationships between the nature of the electrode/molecule interface (physisorbed or chemisorbed, evaporated metal electrode, mechanical contact, etc.) and the electronic transport properties of these molecular-scale devices. We also discuss the effects of symmetric versus asymmetric coupling of the two ends of the molecules with the electrodes.  相似文献   

6.
In order to realize molecular electronic devices, molecules with electrically interesting behavior must be identified. One molecule that has potential for use in devices is an oligo(phenylene ethynylene) (OPE) molecule with nitro sidegroup(s). These “nitro” molecules have been reported to show electrical switching with memory behavior, as well as negative differential resistance (NDR). However, different research groups testing the nitro molecules in different test beds have observed different electrical behaviors. In this work, we assembled two different nitro monolayers: one completely composed of nitro molecules and the second a mixed matrix where nitro molecules were separated by dodecanethiol molecules. We used scanning tunneling microscopy to image each of the monolayers and observed that the nitro molecules were effectively inserted into the ordered dodecanethiol monolayer. We tested the electrical behavior of the pure monolayer, as well as the mixed monolayer, in our nanowell test device. The nanowell devices were fabricated on micron-size gold lines patterned on oxide-coated silicon wafers. The gold lines were covered with a silicon dioxide layer, through which a nanometer size well was milled. This nanowell device was filled with a self-assembling monolayer of organic molecules, and capped with titanium and gold. The nanowell electrical results showed switching with memory for the pure nitro monolayer, but not for the mixed monolayer. This switching behavior consisted of a molecule starting in a high conductivity state and switching to a low conductivity state upon application of a threshold voltage. The high conductivity state could only be returned by application of an opposite threshold voltage.  相似文献   

7.
We show that the negative differential resistance in the I/sub d/-V/sub ds/ characteristics observed in hydrodynamic transport simulations of partially depleted silicon-on-insulator MOSFETs disappears if the nonlocality of tunneling effects are properly accounted for in the recombination-generation process.  相似文献   

8.
Metal gate work function engineering on gate leakage of MOSFETs   总被引:1,自引:0,他引:1  
We present a systematic study of tunneling leakage current in metal gate MOSFETs and how it is affected by the work function of the metal gate electrodes. Physical models used for simulations were corroborated by experimental results from SiO/sub 2/ and HfO/sub 2/ gate dielectrics with TaN electrodes. In bulk CMOS results show that, at the same capacitance equivalent oxide thickness (CET) at inversion, replacing a poly-Si gate by metal reduces the gate leakage appreciably by one to two orders of magnitude due to the elimination of polysilicon gate depletion. It is also found that the work function /spl Phi//sub B/ of a metal gate affects tunneling characteristics in MOSFETs. It is particularly significant when the transistor is biased at accumulation. Specifically, the increase of /spl Phi//sub B/ reduces the gate-to-channel tunneling in off-biased n-FET and the use of a metal gate with midgap /spl Phi//sub B/ results in a significant reduction of gate to source/drain extension (SDE) tunneling in both n- and p-FETs. Compared to bulk FET, double gate (DG) FET has much lower off-state leakage due to the smaller gate to SDE tunneling. This reduction in off-state leakage can be as much as three orders of magnitude when high-/spl kappa/ gate dielectric is used. Finally, the benefits of employing metal gate DG structure in future CMOS scaling are discussed.  相似文献   

9.
在超高真空中使用热蒸发方法,在Au(111)表面上制备了C90分子的分子单层膜,并利用超高真空低温扫描隧道显微镜在120 K温度下对其结构进行研究.观察到C90分子在Au(111)表面上先是沿着台阶边缘生长,分子铺满一层后,会在薄膜上形成岛状结构.本文对岛状结构进行了原位高分辨表征,观察到C90分子在正偏压和负偏压下的...  相似文献   

10.
Co-酞菁和Cu-酞菁在Au(111)表面吸附行为的比较   总被引:2,自引:2,他引:0  
利用扫描隧道显微术并结合理论计算研究了金属co-酞菁和cu-酞菁分子在Au(111)表面上的吸附行为的差异。结果显示,由于这两种分子与衬底电荷转移的差异,引起了分子间相互作用不同,使得两种分子在Au(111)表面表现出不同的吸附组装结构。分子一衬底相互作用与分子间库仑排斥作用两种机制的竞争是造成其组装结构差异的原因。  相似文献   

11.
Polymer electrolyte films are deposited onto highly porous electrospun mats using layer‐by‐layer (LbL) processing to fabricate composite proton conducting membranes. By simply changing the assembly conditions for generation of the LbL film on the nanofiber mat substrate, three different and unique composite film morphologies can be achieved in which the electrospun mats provide mechanical support; the LbL assembly produces highly conductive films that coat the mats in a controlled fashion, separately providing the ionic conductivity and fuel blocking characteristics of the composite membrane. Coating an electrospun mat with the LbL dipping process produces composite membranes with “webbed” morphologies that link the fibers in‐plane and give the composite membrane in‐plane proton conductivities similar to that of the pristine LbL system. In contrast, coating an electrospun mat using the spray‐LbL process without vacuum produces a uniform film that bridges across all of the pores of the mat. These membranes have methanol permeability similar to free‐standing poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6‐dimethyl 1,4‐phenylene oxide) (PDAC/sPPO) thin films. Coating an electrospun mat with the vacuum‐assisted spray‐LbL process produces composite membranes with conformally coated fibers throughout the bulk of the mat with nanometer control of the coating thickness on each fiber. The mechanical properties of the LbL‐coated mats display composite properties, exhibiting the strength of the glassy PDAC/sPPO films when dry and the properties of the underlying electrospun polyamide mat when hydrated. By combining the different spray‐LbL fabrication techniques with electrospun fiber supports and tuning the parameters, mechanically stable membranes with high selectivity can be produced, potentially for use in fuel cell applications.  相似文献   

12.
The contact resistance of a transistor using self-assembled monolayer (SAM)-modified source and drain electrodes depends on the SAM tunnel resistance, the height of the injection barrier and the morphology at the contact. To disentangle the different contributions, we have combined here the transmission line measurements in transistors with transport measurements of SAMs in large-area molecular junctions. The tunnel resistance of the SAM has been independently extracted in two-terminal large-area molecular junctions. We show that the tunneling resistance of the SAM can be added linearly to the contact resistance of the transistor with bare Au electrodes, to account for the increased contact resistance in the SAM-modified transistor. The observed agreement is discussed. The manifestation of the SAM in the contact resistance shows that transistors can potentially be used as an experimental test-bed for molecular electronics.  相似文献   

13.
Addressable Au/dipyrimidinyl–diphenyl/Au molecular junctions are fabricated using elastic polymer stamp-printing method. To study the charge transport, current–voltage measurements are carried out from 95 up to 295 K in vacuum under both dark and light conditions. Reversible diode rectification and negative differential resistance phenomena are observed. The rectification efficiency dramatically decreases upon temperature increase or light illumination. Theoretical calculations based on the non-equilibrium Green’s function method combined with the density functional theory is performed to elucidate the negative differential resistance behaviors. We show that the different rectification efficiency is caused by the interfacial asymmetry and the dipole effects. The negative differential resistance may be attributed to the variation of the coupling degree between the incident states of the Au electrodes and the molecular orbitals, which depends largely on the S–Au contact geometry. The direct tunneling and Fowler–Nordheim tunneling act as the main transport mechanisms for low and high bias regions, respectively. The barrier height depends largely on the light illumination, substrate temperature, and bias polarity. The distinctly different adsorbing nature of the Au/molecule interface may account for the performances.  相似文献   

14.
A new quantum hydrodynamic transport model based on a quantum fluid model is used for numerical calculations of different quantum sized devices. The simulation of monolithic integrated circuits of resonant tunneling structures and high electron mobility transistors (HEMT) based on In/sub 053/Ga/sub 0.47/As-In/sub 052/Al/sub 0.48/As-InP is demonstrated. With the new model, it is possible to describe quantum mechanical transport phenomena like resonant tunneling of carriers through potential barriers and particle accumulation in quantum wells. Different structure variations, especially the resonant tunneling diode area and the gate width of the HEMT structure, show variable modulations in the output characteristics of the monolithic integrated device.  相似文献   

15.
In this study, we have developed a SiGe dot floating-gate flash memory with high-K dielectric (HfO/sub 2/) tunneling oxide. Using SiGe dots and HfO/sub 2/ tunneling oxide, a low program/erase voltage can be achieved, along with good endurance and charge retention characteristics as compared to the SiGe dots with a SiO/sub 2/ tunneling oxide. We have also examined the impact of Ge concentration in the SiGe dots on charge retention time. This demonstrates that the SiGe dots with HfO/sub 2/ tunneling oxide can be used as the floating gate to replace SiGe dots with SiO/sub 2/ tunneling oxide and have a high potential for further scaling of floating gate memory devices.  相似文献   

16.
Understanding complex correlations between the macroscopic device performance (largely dependent on the character of the metal–semiconductor contact) and the metallurgy of contact formation on the atomic level in cadmium zinc telluride (CdZnTe) radiation detectors remains a formidable challenge. In this work, an effort towards bridging that macro–nano knowledge gap is made by conducting a series of controlled experiments aimed at correlating electrical properties of the In contact to n‐type CdZnTe(110) surface with the step‐by‐step process of contact formation. This can only be achieved by using high spatial resolution techniques, capable of conducting highly localized measurements on the nano‐ and sub‐nanoscale, such as scanning probe microscopy. Scanning tunneling microscopy is used in situ to monitor the behavior of various In atom coverages on an atomically flat and ordered CdZnTe surface under well‐controlled molecular beam epitaxial conditions in ultra‐high vacuum. Electrical derivatives of atomic force microscopy are used to measure the electrical contact properties, such as contact potential difference and spreading resistance in torsion resonance tunneling mode. It is concluded that In atoms preferentially reacted with Te atomic‐rows already at room temperature, forming nanometric patches of indium–telluride Schottky‐type contacts. The methods developed in this study, in terms of both nanocontact fabrication and characterization (especially in terms of electrical properties) should benefit basic and applied research of any metal–semiconductor system.  相似文献   

17.
A new type of thin‐film electrode that does not utilize conducting polymers or traditional metal or chemical vapor deposition methods has been developed to create ultrathin flexible electrodes for fuel cells. Using the layer‐by‐layer (LbL) technique, carbon–polymer electrodes have been assembled from polyelectrolytes and stable carbon colloidal dispersions. Thin‐film LbL polyelectrolyte–carbon electrodes (LPCEs) have been successfully assembled atop both metallic and non‐metallic, porous and non‐porous substrates. These electrodes exhibit high electronic conductivities of 2–4 S cm–1, and their porous structure provides ionic conductivities in the range of 10–4 to 10–3 S cm–1. The electrodes show remarkable stability towards oxidizing, acidic, or delaminating basic solutions. In particular, an LPCE consisting of poly(diallyldimethyl ammonium chloride)/poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid)/carbon–platinum assembled on a porous stainless steel support yields an open‐circuit potential similar to that of a pure platinum electrode. With LbL carbon–polymer electrodes, the membrane‐electrode assembly (MEA) in a fuel cell can be made several times thinner, assume multiple geometries, and hence be more compact. The mechanism for LPCE deposition, electrode structure, and miniaturization will be presented and discussed, and demonstrations of the LbL electrodes in a traditional Nafion‐based proton fuel cell and the first demonstration of a thin‐film hydrogen–air “soft” fuel cell fully constructed using multilayer assembly are described.  相似文献   

18.
In (organic) spin-valve devices, two ferromagnetic electrodes having different coercive fields are used to achieve an anti-parallel configuration necessary to enforce spin-flip of electrons within the semiconductor spacer layer. Here we report a use of immobilized magnetic organic molecules as spin-injection and spin-detection layers to form pre-fabricated spin-valve devices. While immobilized manganese- and nickel-phthalocyanines were used as spin-injection and spin-detection layers both, copper phthalocyanine acted as the spacer layer in the all-organic spin-valve devices.In the current-voltage characteristics of parallel and anti-parallel configurations, the electrical resistance was always higher for the latter one implying positive magnetoresistance in the material. By lowering thickness of the spacer layer down to a monolayer region, a tunneling regime could be achieved; spin-flip process in organic spin-valves has been found to be facile in the tunneling regime as compared to that during the spin-transport process through a thicker spacer layer.  相似文献   

19.
We fabricate molecular rectifiers based on a monolayer of a donor molecule and a monolayer of an acceptor molecule in sequence. We characterize the donor/acceptor assemblies under ac voltage. We show that high-frequency half-wave rectifiers can be fabricated and characterized from the molecular assembly. From the frequency-response of the half-wave rectifiers, we study time responses of the processes that are responsible for the observed molecular rectification. We comment on the three steps of a molecular rectifier – the steps being electron-transfer to the acceptor moiety, electron-withdrawal from the donor moiety, and charge-transfer between an anionic-acceptor and a cationic-donor. The results show that the latter process is a slow one that may be due to conformational-change of the anionic-acceptors upon oxidation.  相似文献   

20.
The results of time-resolved photoluminescence studies of heterostructures containing monolayer arrays of InAs/GaAs quantum dots are presented. A two-component time dependence of intensity of photoluminescence from the ground state of quantum dots, with characteristic times of the slow component up to hundreds of nanoseconds and those of rapid one several nanoseconds, is studied. It is shown that the slow component is determined by the transport of nonequilibrium charge carriers between the quantum dots. At low temperatures, the time of the slow component is determined by tunneling, and at high temperatures by thermal escape of nonequilibrium charge carriers. The ratio of the contributions of tunneling and thermal escape is determined by the degree of isolation of quantum dots. A theoretical model is constructed that describes the effect of the dynamics of carrier transport on the emergence and decay of the slow component of photoluminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号