首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Strontium zirconate (SrZrO3) thermal barrier coatings were deposited by solution precursor plasma spray (SPPS) using an aqueous precursor solution. The phase transition of the SrZrO3 coating and the influence of the aging time at 1400 °C on the microstructure, phase stability, thermal expansion coefficient, and thermal conductivity of the coating were investigated. The unique features of SPPS coatings, such as interpass boundary (IPB) structures, nano- and micrometer porosity, and through-thickness vertical cracks, were clearly observed evidently in the coatings. The vertical cracks of the coatings remained substantially unchanged while the IPB structures gradually diminished with prolonged heat treatment time. t-ZrO2 developed in the coatings transformed completely to m-ZrO2 phase after heat treatment for 100 h. Meanwhile, the SrZrO3 phase in the coatings exhibited good phase stability upon heat treatment. Three phase transitions in the SrZrO3 coatings were revealed by thermal expansion measurements. The thermal conductivity of the as-sprayed SrZrO3 coating was ~1.25 W m?1 K?1 at 1000 °C and remained stable after heat treatment at 1400 °C for 360 h, revealing good sintering resistance.  相似文献   

2.
The solution precursor plasma spray (SPPS) process is capable of depositing highly durable thermal barrier coatings (TBCs). In this study, an aqueous chemical precursor feedstock was injected into the plasma jet to deposit SrZrO3 thermal barrier coating on metal substrate. Taguchi design of experiments was employed to optimize the SPPS process. The thermal characteristics and phase evolution of the SrZrO3 precursor, as well as the influence of various spray parameters on the coating deposition rate, microhardness, microstructure, and phase stability, were investigated. The experimental results showed that, at given spray distance, feedstock flow rate, and atomization pressure, the optimized spray parameters were arc current of 600 A, argon flow rate of 40 L/min, and hydrogen flow rate of 10 L/min. The SrZrO3 coating prepared using the optimized spray parameters had single-pass thickness of 6.0 μm, porosity of ~18%, and microhardness of 6.8 ± 0.1 GPa. Phase stability studies indicated that the as-sprayed SrZrO3 coating had good phase stability in the temperature range from room temperature to 1400 °C, gradually exhibiting a phase transition from t′-ZrO2 to m-ZrO2 in the SrZrO3 coating at 1450 °C with increasing time, while the SrZrO3 phase did not change.  相似文献   

3.
In this study, a Yb2O3 coating was fabricated by the atmospheric plasma spray technique. The phase composition, microstructure, and thermal stability of the coating were examined. The thermal conductivity and thermal expansion behavior were also investigated. Some of the mechanical properties (elastic modulus, hardness, fracture toughness, and flexural strength) were characterized. The results reveal that the Yb2O3 coating is predominantly composed of the cubic Yb2O3 phase, and it has a dense lamellar microstructure containing defects. No mass change and exothermic phenomena are observed in the thermogravimetry and differential thermal analysis curves. The high-temperature x-ray diffraction results indicate that no phase transformation occurs from room temperature to 1500 °C, revealing the good phase stability of the Yb2O3 coating. The coefficient of thermal expansion of the Yb2O3 coating is (7.50-8.67)?×?10?6 K?1 in the range of 200-1400 °C. The thermal conductivity is about 1.5 W m?1 K?1 at 1200 °C. The Yb2O3 coating has excellent mechanical properties and good damage tolerant. The unique combination of these properties implies that the Yb2O3 coating might be a promising candidate for T/EBCs applications.  相似文献   

4.
In the present work, Yb2Si2O7 powder was synthesized by solid-state reaction using Yb2O3 and SiO2 powders as starting materials. Atmospheric plasma spray technique was applied to fabricate Yb2Si2O7 coating. The phase composition and microstructure of the coating were characterized. The density, open porosity and Vickers hardness of the coating were investigated. Its thermal stability was evaluated by thermogravimetry and differential thermal analysis (TG-DTA). The thermal diffusivity and thermal conductivity of the coating were measured. The results showed that the as-sprayed coating was mainly composed of crystalline Yb2Si2O7 with amorphous phase. The coating had a dense structure containing defects, such as pores, interfaces and microcracks. The TG-DTA results showed that there was almost no mass change from room temperature to 1200 °C, while a sharp exothermic peak appeared at around 1038 °C in DTA curve, which indicated that the amorphous phase crystallized. The thermal conductivity of the coating decreased with rise in temperature up to 600 °C and then followed by an increase at higher temperatures. The minimum value of the thermal conductivity of the Yb2Si2O7 coating was about 0.68 W/(m K).  相似文献   

5.
Y2O3 and Yb2O3 co-doped strontium zirconate with chemistry of Sr(Zr0.9Y0.05Yb0.05)O2.95 (SZYY) was synthesized and had a minor second phase of Yb2O3. The SZYY showed good phase stability not only from room temperature to 1400 °C but also at high temperature of 1450 °C for a long period, analyzed by thermogravimetry-differential scanning calorimetry and x-ray diffraction, respectively. The coefficients of thermal expansion (CTEs) of the sintered bulk SZYY were recorded by a high-temperature dilatometer and revealed a positive influence on phase transitions of SrZrO3 by co-doping with Y2O3 and Yb2O3. The thermal conductivities of SZYY were at least ~30% lower in contrast to that of SrZrO3 and 8YSZ in the whole tested temperature range. Good chemical compatibility was observed for SZYY with 8YSZ or Al2O3 powders after a 24 h heat treatment at 1250 °C. The phase stability and the microstructure evolution of the as-sprayed SZYY coating during annealing at 1400 °C were also investigated.  相似文献   

6.
Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5?×?10?12 S/cm before annealing up to 5.6?×?10?13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.  相似文献   

7.
The microstructure of the cermet support significantly influences the performance of solid oxide fuel cells (SOFCs). The properties required for the support include high electrical conductivity, necessary permeability, good match of thermal expansion with other layers, and high strength. In this study, a flame-sprayed porous Ni50Cr50-Al2O3 cermet was designed as the support of SOFCs. The effect of cermet microstructure on its gas permeability, electrical conductivity, thermal expansion coefficient (TEC), and bending strength was investigated. Results show that the gas leakage rate of the cermet increased with the increase of polyester content in the starting powder. The cermet exhibited a thermal expansion coefficient of 11.39 × 10?6 K?1 from 25 to 1000 °C. Moreover, the electrical conductivity of the cermet increased significantly and reached 1015 S/cm after sintering at 1000 °C for 15 h. The bending strength of the cermet reached 171 MPa. The cermet stability at high temperatures and SOFCs’ performance are discussed.  相似文献   

8.
B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10?6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.  相似文献   

9.
Interconnect layers on stainless steel substrates (STS430) for solid oxide fuel cells (SOFC) were built up by atmospheric plasma spraying (APS) using spray dried La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF) and blended LSCF/Ag composites. The microstructure and phase of each coating were analyzed using scanning electron microscopy (SEM) and x-ray diffraction (XRD) studies, respectively. Furthermore, bond strength, microhardness, performance in a thermal cycle test and in an oxidation test, and electrical conductivity were measured and compared. The coatings prepared from spray dried LSCF have higher porosity and more cracks within the splats and at intersplat boundaries. In contrast, the coatings prepared from LSCF/Ag had fewer cracks and less porosity due to the relatively high ductility of silver. After oxidation testing at 800 °C for 200 h, the weight change of the STS430 substrate and the LSCF and LSCF/Ag-coated alloys were found to be 0.06833, 0.01950, and 0.01656 mg/cm2, respectively. Also the electrical conductivity of LSCF and LSCF/Ag coatings were higher than that of STS430 by two orders.  相似文献   

10.
Next Generation Thermal Barrier Coatings for the Gas Turbine Industry   总被引:2,自引:0,他引:2  
The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.  相似文献   

11.
Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10?2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10?3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.  相似文献   

12.
Wollastonite coatings were deposited using an atmospheric plasma spraying technique. The microstructure and phase compositions of the coating before and after heat treatment were investigated using scanning electron microscopy (SEM), x-ray diffraction (XRD), and differential thermal analysis (DTA) technologies, respectively. In addition, the coefficient of thermal expansion and thermal diffusivity of the coating were also investigated. Crystalline wollastonite, glassy phase, and tridymite (SiO2) were observed in the coating. Tridymite (SiO2) likely reacted with other composites such as CaO and glassy phase to form crystalline wollastonite when the coating was heated at about 882 °C. During the first thermal cycle, the coefficient of thermal expansion of the coating decreased dramatically between 700 and 850 °C and the thermal diffusivity of the coating was 2.7–3.1 × 10−3cm2/s between 20 and 1000 °C. During the second thermal cycle, the coefficient of thermal expansion of the coating increased slightly between room temperature and 1000 °C and the thermal diffusivity of the coating increased by about 20% compared with that of the first thermal cycle. The atmospheric plasma sprayed Wollastonite coating may be used as thermal barrier coating.  相似文献   

13.
This paper reports the corrosion behavior of Ni alloy coatings deposited by high velocity oxyfuel spraying, and representative boiler substrate alloys in simulated high temperature biomass combustion conditions. Four commercially available oxidation resistant Ni alloy coating materials were selected: NiCrBSiFe, alloy 718, alloy 625, and alloy C-276. These were sprayed onto P91 substrates using a JP5000 spray system. The corrosion performance of the coatings varied when tested at ~525, 625, and 725 °C in K2SO4-KCl mixture and gaseous HCl-H2O-O2 containing environments. Alloy 625, NiCrBSiFe, and alloy 718 coatings performed better than alloy C-276 coating at 725 °C, which had very little corrosion resistance resulting in degradation similar to uncoated P91. Alloy 625 coatings provided good protection from corrosion at 725 °C, with the performance being comparable to wrought alloy 625, with significantly less attack of the substrate than uncoated P91. Alloy 625 performs best of these coating materials, with an overall ranking at 725 °C as follows: alloy 625 > NiCrBSiFe > alloy 718 ? alloy C-276. Although alloy C-276 coatings performed poorly in the corrosion test environment at 725 °C, at lower temperatures (i.e., below the eutectic temperature of the salt mixture) it outperformed the other coating types studied.  相似文献   

14.
Y2O3 and Yb2O3 co-doped strontium hafnate powder with chemistry of Sr(Hf0.9Y0.05Yb0.05)O2.95 (SHYY) was synthesized by a solid-state reaction at 1450 °C. The SHYY showed good phase stability not only from 200 to 1400 °C but also at a high temperature of 1450 °C for a long period, analyzed by differential scanning calorimetry and x-ray diffraction, respectively. The coefficient of thermal expansion of the sintered bulk SHYY was recorded by a high-temperature dilatometer and revealed a positive influence on phase transitions of SrHfO3 by co-doping with Y2O3 and Yb2O3. The thermal conductivity of the bulk SHYY was approximately 16% lower in contrast to that of SrHfO3 at 1000 °C. Good chemical compatibility was observed for SHYY with 8YSZ or Al2O3 powders after a 24 h heat treatment at 1250 °C. The phase stability and the microstructure evolution of the as-sprayed SHYY coating during annealing at 1400 °C were also investigated.  相似文献   

15.
Free-standing La2Zr2O7 coatings were obtained by plasma spraying, using an amorphous La-O-Zr precursor as the feedstock. The La-O-Zr precursor powder was prepared by coprecipitation. During thermal spraying, the formation of coatings can be regarded as a joint process of melting-solidification, thermal decomposition, and crystallization. The time required for crystal growth was significantly shortened during spraying. Consequently, the average grain size of coatings was approximately 200 nm, with a narrow distribution (100-500 nm). Coatings prepared by this method show better thermophysical properties than those prepared with crystalline La2Zr2O7 powder as the feedstock. The thermal conductivity of the as-sprayed coating was approximately 0.36-0.47 W/m K and the average coefficient of thermal expansion (CTE) is 11.1 × 10?6/K.  相似文献   

16.
In this work, the phase composition and microstructure evolution of vacuum plasma-sprayed MoSi2 coating between room temperature and 1200 °C in air was evaluated and characterized. The results showed that hexagonal MoSi2 (h-MoSi2) became the main phase in the deposited coating, which remained even after 50 h oxidation at 500 °C, exhibiting excellent thermal stability. MoO3 bundles and SiO2 clusters were generated by consuming tetragonal MoSi2 (t-MoSi2) after 1 h, and white powders formed on the coating’s surface after 10-h exposure to air at 500 °C. Most h-MoSi2 transformed to t-MoSi2 at 800 °C; moreover, a protective silica layer formed on the coating surface. Similar phenomenon was observed for the coating exposed to 1000 °C where grain growth also occurred. Vacuum heat treatment at 900 °C effectively improved the thermal stability of the MoSi2 coating. The formation of silica layer alleviated negative effects of structural defects and helped the MoSi2 coating serve as a protective coating for varied substrates.  相似文献   

17.
Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m?1 K?1 for EB-PVD YSZ coatings to about 0.7 W m?1 K?1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ′-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.  相似文献   

18.
A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.  相似文献   

19.
Al2O3 coatings were deposited on 1Cr13 substrates by atmospheric plasma spraying at different deposition temperatures of 140, 275, 375, 480, 530, and 660 °C to investigate the effect of coating surface temperature on the lamellar bonding formation. The fractured cross section morphology was characterized by scanning electron microscopy to reveal the lamellar interface bonding. X-ray diffraction was used to characterize the phase contents in the coating. Micro-hardness, Young??s modulus, and thermal conductivity of the deposits were measured for examining the dependency of coating properties on its microstructure. The results show that the interface area bonded through columnar grain growth across splat-splat interfaces was increased with increasing deposition temperature. Moreover, micro-hardness, Young??s modulus and thermal conductivity were increased with the increase of deposition temperature. However, the phase structure of the coating changed little with deposition temperature. The results evidently indicate that the apparent bonding ratio and properties of deposits can be significantly changed in a wider range through controlling the deposition temperature.  相似文献   

20.
Perovskite is a versatile group of oxide materials allowing their properties to be tailored by composition towards specific requirements. LaAlO3 was prepared to study and report its properties in the context of its potential in thermal barrier coatings (TBCs) technology. A citric acid method was used for synthesis and the perovskite structure was confirmed using XRD and FT-IR. Viscosity of the solution precursor was checked as well as the particle size by laser particle size analysis. Densification behavior of the material was followed by conventional sintering and by spark plasma sintering. Apparent porosity by the Archimedes method, thermal conductivity and thermal expansion coefficient were studied. Mechanical and fracture properties were measured at elevated temperatures up to 1300 °C. For samples sintered at 1200?1400 °C, coefficient of thermal expansion ranged from 5.5×10?6 to 6.5×10?6 K?1 and thermal conductivity ranged between 2.2 and 3.4 W/(m·K). Elastic modulus and ultimate stress were measured at 1000?1300 °C, while by micro-indentation, fracture toughness was found to be 3 MPa·m1/2. As the sintering temperature increased from 1200 to 1500 °C, significant densification from 3.21 to 5.81 g/cm3 was found, indicating that material annealing should be made at least at 1400 °C. Under this condition, negligible dimensional change in phase transition temperature of LaAlO3 from the rhombohedral (R3c) to the ideal cubic (Pm3m) is found. Data reported in this work can be useful for comparing the mechanical and fracture behaviours of different TBCs developed involving LaAlO3 as well as input for numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号