首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly conductive, smooth and transparent electrode is developed by coating poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) over silver nanowires (AgNWs) followed by a hot-pressing method. The hot-pressed AgNW/PEDOT:PSS film shows a low sheet resistance of 12 Ω/square, a transmittance of 83% at 550 nm and a smooth surface. The improvement of the conductivity and smoothness are ascribed to the fusion of nanowires resulted from the mechanical hot-pressing. The AgNW/PEDOT:PSS film on polyethylene naphthalate (PEN) substrate exhibits higher conductive stability against the bending test than commonly used indium tin oxide (ITO). Using the hot-pressed AgNW/PEDOT:PSS film as the anode, we have fabricated ITO-free organic light emitting diode with a maximum current efficiency of 58.2 cd/A, which is higher than the device with ITO anode. This proves that such AgNW/PEDOT:PSS film treated by hot-pressing is a promising candidate for flexible optoelectronic devices.  相似文献   

2.
A solvent additive in PEDOT:PSS solution is one of many methods to improve the conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. We explore a new type of the solvent additive, namely tetramethylene sulfone (TMS), for the fabrication of the PEDOT:PSS conductive layer in the ITO/PEDOT:PSS/P3HT:PCBM/TiOx/Al polymer photovoltaic cells, in comparison to a more common dimethyl sulfoxide (DMSO) solvent additive. At optimal conditions, the TMS additive at 10 wt.% has been found to enhance the conductivity of pristine PEDOT:PSS films from 0.04 S/cm up to approximately 189 S/cm, compared with the highest conductivity for the case of the DMSO additive at 15 wt.% of 117 S/cm. Possible mechanisms of this conductivity enhancement, relating to the polymer conformation and the film morphology, have been investigated by Raman spectroscopy, X-ray diffraction, atomic force microscopy, and transmission electron microscopy. The performance of the polymer photovoltaic cells fabricated with the solvent additives PEDOT:PSS films follows a similar trend to the conductivity of the films as a function of the additive concentration. The additives mainly lead to greater short circuit current density (Jsc) of the photovoltaic cells. The highest power conversion efficiency (PCE) of 2.24% of the device has been obtained with the 10 wt.% TMS additive of, compared to the PCE of 1.48% for the standard device without solvent additive.  相似文献   

3.
《Organic Electronics》2014,15(8):1849-1855
The conductivity enhancement of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by dynamic etching process was investigated to introduce the outstanding and simplest method for soft electronics. Four different samples which were pristine PEDOT:PSS, PEDOT:PSS doped with 5 wt.% DMSO, PEDOT:PSS with dipping process, and PEDOT:PSS with dynamic etching process were prepared to compare the properties such as conductivity, morphology, relative atomic percentage, and topography. All samples were characterized by four point probe, current atomic force microscopy (C-AFM), X-ray photoelectron spectroscopy (XPS), and UV–visible spectroscopy. The conductivity of the sample with dynamic etching process showed the highest value as 1299 S/cm among four samples. We proved that the dynamic etching process is superior to remove PSS phase from PEDOT:PSS film, to flow strong current through entire surface of PEDOT:PSS, and to show the smoothest surface (RMS 2.28 nm). XPS analysis was conducted for accurate chemical and structural surface environments of four samples and the relative atomic percentage of PEDOT in the sample with dynamic etching was the highest as 29.5%. The device performance of the sample with the dynamic etching process was outstanding as 10.31 mA/cm2 of Jsc, 0.75 eV of Voc, 0.46 of FF, and 3.53% of PCE. All properties and the device performance for PEDOT:PSS film by dynamic etching process were the most excellent among the samples.  相似文献   

4.
In this paper, the highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film realized by applying the doping technique and the post-treatment process is demonstrated. The conductivity of the spin coated PEDOT:PSS film enhanced greatly from 0.7 S/cm to 736 S/cm after 1.25% of p-toluenesulfonic acid solution (50 wt%) was doped into the PEDOT:PSS aqueous dispersion. The post-treatment using dimethyl sulfoxide further improved the conductivity to 1549 S/cm. The highly conductive PEDOT:PSS film was used as transparent electrode to fabricate ITO-free polymer dispersed liquid crystal (PDLC) cell. The experimental results showed that the electro-optical properties of the PDLC cell fabricated by the highly conductive PEDOT:PSS film were comparable to those of the PDLC cell constructed by ITO. This study reveals that the highly conductive PEDOT:PSS film is a prospective material for manufacturing ITO-free liquid crystal devices.  相似文献   

5.
The electrical conductivity of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films was significantly improved without losing the optical transparency by treating the films with solution of 2-Methylimidazole in ethanol. The maximum electrical conductivity of such a thin film reached 930 S cm−1, more than 1150 order of magnitude higher than that of pure PEDOT:PSS film. The mechanism of conductivity enhancement of treated thin PEDOT:PSS films was explored by atomic force microscopy (AFM) and UV/VIS spectrophotometer. The AFM scans show that the surface of the 2-Methylimidazole treated PEDOT:PSS layer is smoother than that of the pristine PEDOT:PSS thin film. Improvement in the morphology, electrical and optical properties of PEDOT:PSS films makes them highly suitable for numerous applications in optoelectronic devices.  相似文献   

6.
Phenol as one of the most polar solvent was used to enhance the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. The conductivity of PEDOT:PSS films improved to 1193 S/cm after treatment with phenol vapor and 1054 S/cm after treatment with phenol drop. The treated films also showed high transmittance in the visible region which is one of the crucial factors for optoelectronic devices such as organic solar cells and light emitting diodes. The mechanism of conductivity enhancement of treated thin PEDOT:PSS films was investigated by atomic force microscopy (AFM) and UV/Vis spectrophotometer. The AFM images showed that the ratio of PEDOT to PSS at top most of the surface was increased for treated film. Rearrangement of PEDOT segment throughout the film and hence conformational changes are the reasons for enhancement of conductivity. The modified PEDOT:PSS films were used as electrode for ITO-free organic solar cells (OSCs). These ITO-free OSCs showed almost equal operation to those for ITO electrodes.  相似文献   

7.
《Organic Electronics》2014,15(8):1822-1827
A patterning scheme for poly(3,4-ethylenedioxythio-phene):poly(styrenesulfonate) (PEDOT:PSS) is reported. With a silver interlayer, the conductive PEDOT:PSS film can be patterned down to micrometer scales by traditional photolithography, and this patterning scheme can be applied on large-area flexible substrates. Through systematical investigations, the patterning processes have no obvious influence on both the bulk and surface properties of PEDOT:PSS films. Efficient organic light emitting diodes (OLEDs) are realized based on this patterned PEDOT:PSS anode, and they show comparable performance to those devices with an indium tin oxide (ITO) anode. High-resolution OLED pixel arrays are also demonstrated. Our interlayer approach here has an advantage of patterning PEDOT:PSS with high resolution and large scale, and it is also compatible with traditional photolithographic processes which substantially save the capital cost. Results indicate that the photographically patterned conductive PEDOT:PSS film becomes a promising candidate for eletrical eletrode material in organic electronic applications.  相似文献   

8.
High efficient flexible polymer light-emitting devices which composed with highly conductive and transparent foldable polymer electrodes were fabricated. New doping materials, n-methyl-2-pyrrolidone (NMP) and n-methylformamide (NMF), have much improved the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The selectively modulated inkjet-printing method facilitated the PEDOT:PSS’s application to both transparent anodes and highly conductive bus line electrodes. Multiple-time printed PEDOT:PSS electrodes showed a similar performance to Ag bus lines while one-time printed anode showed a much better figure of merit than that of ITO on plastic. Due to the flexible property, high transparency and high work function of the polymeric anode, ITO-free PLEDs showed a high performance with foldable characteristics.  相似文献   

9.
Highly conductive and transparent poly‐(3,4‐ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) films, incorporating a fluorosurfactant as an additive, have been prepared for stretchable and transparent electrodes. The fluorosurfactant‐treated PEDOT:PSS films show a 35% improvement in sheet resistance (Rs) compared to untreated films. In addition, the fluorosurfactant renders PEDOT:PSS solutions amenable for deposition on hydrophobic surfaces, including pre‐deposited, annealed films of PEDOT:PSS (enabling the deposition of thick, highly conductive, multilayer films) and stretchable poly(dimethylsiloxane) (PDMS) substrates (enabling stretchable electronics). Four‐layer PEDOT:PSS films have an Rs of 46 Ω per square with 82% transmittance (at 550 nm). These films, deposited on a pre‐strained PDMS substrate and buckled, are shown to be reversibly stretchable, with no change to Rs, during the course of over 5000 cycles of 0 to 10% strain. Using the multilayer PEDOT:PSS films as anodes, indium tin oxide (ITO)‐free organic photovoltaics are prepared and shown to have power conversion efficiencies comparable to that of devices with ITO as the anode. These results show that these highly conductive PEDOT:PSS films can not only be used as transparent electrodes in novel devices (where ITO cannot be used), such as stretchable OPVs, but also have the potential to replace ITO in conventional devices.  相似文献   

10.
《Organic Electronics》2014,15(5):1062-1070
In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were pre-adjusted during coating control experiments such as spray head distance, angle and cone for airbrush as well as flow rate, power and focus for ultrasonic nozzle. Water-based solutions of PEDOT:PSS having 20% of N-methylpyrrolidone (NMP) were sprayed on glass substrates at temperatures ranging from 75 to 150 °C. The resulting films were further chemically treated with ethylene glycol (EG) and evaluated with respect to their morphological, electrical and optical properties. Before EG-treatment the ultrasonic spraying resulted in smoother films with conductivity up to 2–3.9 times higher than their airbrushed counterparts. Deposition temperature proved to have minor effect on the morphological and electro-optical properties of PEDOT:PSS films. On the other hand, the film conductivity was enhanced, peaking at 610.1 S cm1 for ultrasonic spraying, when further chemically modified by EG. IR microspectroscopy mapping analysis, Raman spectroscopy and XRD data indicated a phase-separation between PEDOT and PSS chains and increasing crystallinity in the ultrasonically sprayed films. The application of such PEDOT:PSS films as transparent electrode in flexible AC EL devices is demonstrated.  相似文献   

11.
Chlorinated-Indium Tin Oxide (Cl-ITO) has been found to have higher work function than the pristine ITO. When used as anode for polymer light-emitting diodes (PLEDs) with deep blue emitting β-phase poly(9,9-di-n-octylfluorene) (β-PFO) as the emitting layer, it allows hole injection without barrier. However, the presence of chlorine free radical on the surface of Cl-ITO leads to an exciton quenching effect. The surface modification on anode by dipping into 1% ammonium (NH4OH) aqueous solution to remove free chlorine radicals on surface can enhance device performance significantly. The single layer device Cl-ITO (treated)/β-PFO/CsF/Al gives the maximum brightness 16773 cd/m2 and maximum luminance efficiency 2.40 cd/A, which are higher than those with untreated Cl-ITO, (2519; 0.27) and CFx treated ITO, (7800; 1.8) and PEDOT:PSS coated ITO, (12884; 1.43). The ease of the present anode treatment allows the one-layer-only device to be a promising candidate for practical application.  相似文献   

12.
We demonstrate flexible organic light-emitting diodes (FOLEDs) that use flexible conductive polymer electrodes patterned by negative mold transfer printing (nMTP). Because pristine poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is unsuitable for nMTP owing to problems with wettability, additives are used to improve the surface wetting properties of the polymer on the mold to successfully employ nMTP. Moreover, the additives improve the conductivity of the polymer electrode. FOLEDs fabricated with the modified PEDOT:PSS using nMTP exhibit electrical properties comparable to those of a device having an indium tin oxide (ITO) anode. These results show that the highly conductive PEDOT:PSS patterned by nMTP can be used as transparent high-resolution electrodes in low-cost ITO-free FOLEDs.  相似文献   

13.
We developed PEDOT:PSS-free organic solar cells (OSCs) using WO3 and In2O3 (IWO) mixed electrodes acting as a buffer hole injection layer (HIL) and anode simultaneously. Through the co-sputtering and rapid thermal annealing (RTA) of WO3 and In2O3, we achieved buffer and anode-integrated transparent electrodes with a sheet resistance of 17 Ohm/square, a transmittance of 90.32%, and a work function of 4.83 eV, all of which are comparable to values obtained with a conventional ITO anode. Due to the existence of WO3 in the In2O3 matrix, OSCs fabricated on an IWO electrode with no acidic PEDOT:PSS buffer layer showed a PCE of 2.87%. Therefore, a transparent IWO electrode simultaneously acting as an HIL and anode layer can be considered a promising transparent electrode for cost-efficient and reliable OSCs because it could eliminate the use of acidic PEDOT:PSS buffer layer.  相似文献   

14.
We report a highly near infrared (NIR) transparent MoO3-doped In2O3 (IMO) film prepared by hetero target sputtering for use as a transparent anode in phosphorescent organic light emitting diodes (OLEDs). Effective activation of Mo dopant in the In2O3 matrix and good crystallinity with the (2 2 2) preferred orientation from by rapid thermal annealing (RTA) led to the lowest resistivity of 4.25 × 10?4 Ohm cm and sheet resistance of 16.9 Ohm/square, comparable to a conventional ITO anode without lose of transparency in the NIR region. Due to high carrier mobility in the IMO matrix, IMO film exhibited higher transmittance in the visible and NIR regions compared to ITO film even though it has a similar resistivity. Both synchrotron X-ray scattering and high resolution transmission electron microscope examinations showed that the optimized IMO film annealed at 600 °C had a rectangular shaped columnar structure with a strongly preferred (2 2 2) orientation. Identical current density–voltage–luminance and quantum efficiency of the phosphorescent OLED fabricated on an IMO anode were comparable to those of the OLED on a reference ITO anode due to the high transparency and low resistivity of the IMO anode.  相似文献   

15.
《Organic Electronics》2014,15(8):1791-1798
An organic Write-Once-Read-Many (WORM) device based on poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as the active layer was fabricated with an inverted architecture. Insertion of an ultrathin layer of poly(methylmethacrylate) (PMMA) between the bottom electrode and the PEDOT:PSS resulted in a systematic and substantial decrease in turn-on voltage, from 7.0 V to less than 1.0 V. An optimal thickness of the PMMA layer was found to yield the lowest consistent turn-on voltage of ∼0.8 V, with 0.5 V being the lowest value of all fabricated devices. The switching mechanism was attributed to filamentary doping of the PEDOT:PSS. Insertion of the PMMA acted to protect the underlying ZnO from being etched by the acidic PEDOT:PSS as well as to improve its wetting properties. Devices were demonstrated on both ITO and aluminum bottom electrodes, with aluminum yielding the highest ON/OFF ratios in the study. Owing to their inverted architecture, the devices demonstrated good stability, and the retention time of the ON-state was determined to be greater than twenty months while stored in air for devices with ITO bottom electrodes. In addition to deposition via spin-coating, blade-coating was demonstrated as a viable processing technique for applications requiring rapid or large-area manufacturing.  相似文献   

16.
We have demonstrated an indium-tin-oxide free organic light-emitting device (OLED) with improved efficiency by doping poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) with graphene oxide (GO) as a composite anode. In comparison with a pure PEDOT:PSS anode, 55% enhancement in efficiency has been obtained for the OLEDs based on the PEDOT:PSS/GO composite anode at an optimal condition. The PEDOT:PSS/GO composite anode shows a lower hole-injection barrier, which contributes to the improved device efficiency. Moreover, both high transmittance and good surface morphology similar to that of the pure PEDOT:PSS film also contribute to the enhanced efficiency. It is obvious that composite anode will generally be applicable in organic optoelectronic devices which require smooth and transparent anode.  相似文献   

17.
The thermal stability of thin (50 nm) PEDOT:PSS films, was investigated by dc conductivity measurements, X-ray and UV photoelectron spectroscopies as a function of heating temperature and heating time. The mechanism of electrical conductivity as a function of temperature is consistent with a hopping type carrier transport. The electrical conductivity decreased, as a function of time, in agreement with a granular metal type structure, in which aging is due to the shrinking of the PEDOT conductive grains. XPS and UPS spectra indicate that conformational changes of the PEDOT:PSS film are responsible for this behaviour and a model for these modifications is proposed.  相似文献   

18.
《Organic Electronics》2008,9(5):727-734
The electrical properties of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of sorbitol have been studied in detail. Although it is well known that sorbitol enhances the conductivity of PEDOT:PSS thin films by three orders of magnitude, the origin and consequences of sorbitol treatment are only partly understood and subject of further study. By thermal annealing of spin coated PEDOT:PSS/sorbitol films and simultaneously monitoring the conductivity, we demonstrate that the strong increase in conductivity coincides with evaporation of sorbitol from the film. Hence, sorbitol is a processing additive rather than a (secondary) dopant. Scanning Kelvin probe microscopy reveals that sorbitol treatment causes a reduction of the work function from 5.1 eV to 4.8–4.9 eV. Sorbitol also influences the environmental stability of the films. While the conductivity of the pristine PEDOT:PSS films increases by about one order of magnitude at ∼50% RH due to an ionic contribution to the overall conductivity, films prepared using sorbitol exhibit an increased environmental stability with an almost constant conductivity up to 45% RH and a slight decrease at 50% RH. The higher stability results from a reduced tendency to take up water from the air, which is attributed to a denser packing of the PEDOT:PSS after sorbitol treatment.  相似文献   

19.
We report on conductivity and optical property of three different types of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films [pristine PH1000 film (PH1000-p), with 5 wt.% ethylene glycol additive (PH1000-EG) and with sulfuric acid post-treatment (PH1000-SA)] before and after polyethylenimine (PEI) treatment. The PEI is found to decrease the conductivity of all the PEDOT:PSS films. The processing solvent of 2-methoxyethanol is found to significantly enhance the conductivity of PH1000-p from 1.1 up to 744 S/cm while the processing solvent of isopropanol or water does not change the conductivity of PH1000-p much. As for the optical properties, the PEI treatment slightly changes the transmittance and reflectance of PH1000-p and PH1000-EG films, while the PEI leads to an substantial increase of the absorptance in the spectral region of 400–1100 nm of the PH1000-SA films. Though the optical property and conductivity of the three different types of PEDOT:PSS films vary with the PEI treatment, the treated PEDOT:PSS films exhibit similar low work function. We demonstrate solar cells with a simple device structure of glass/low-WF PEDOT:PSS/P3HT:ICBA/high-WF PEDOT:PSS cells that exhibit good performance with open-circuit voltage of 0.82 V and fill factor up to 0.62 under 100 mW/cm2 white light illumination.  相似文献   

20.
Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号