首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硬质合金是由难熔金属碳化物(WC,TiC,NbC等)和金属粘结相(如Fe,Ni和Co)组成,通过粉末混合、压制然后烧结而成。然而传统的粉末冶金成形方法模具成本高,难以形成复杂零件。相比之下,增材制造(3D打印)采用数字化叠层加工技术,能够实现快速精准的成形。研究与开发适于增材制造的硬质合金粉末是其中的关键一步,目前,增材制造的硬质合金粉末制备方法主要分为以下4类:机械合金化法、球形WC粉末表面包覆技术、喷雾干燥技术、等离子体球化技术,这4种方法在制备原理、成本和成形方法的灵活性上均有所不同。因此,综述了适用于增材制造成形的硬质合金粉末的4种制备方法,并对制备粉末的特性以及成形性能进行了对比,总结了粉末制备原理、各自的优缺点以及适用的增材制造成形工艺,希望可以推动增材制造成形硬质合金的研究发展。  相似文献   

2.
朱敏 《世界有色金属》2022,(20):232-234
增材制造(3D打印)是一种将复杂的三维结构模型,通过原材料逐层叠加的方式,直接转化成完整零件的新型制造技术。以能量源作为划分依据,可将增材制造技术分为激光增材制造、电弧增材制造、电子束增材制造、光固化增材制造等。其中,激光增材制造技术以激光为零件制造的能量源,激光加工具有诸多优点,如零件成型速度快、激光能量密度高、加工精度高的特点,可实现工业领域中难加工材料和复杂结构零件的制造,在生物医疗、航空航天、国防制造、汽车制造等工业领域优势显著。本文围绕近年来激光增材制造的研究及应用,综述了激光增材制造的工艺方法、工艺原理、应用领域,并探讨了激光增材制造当前所面临的发展“瓶颈”及应对策略。  相似文献   

3.
增材制造技术突破了传统模具加工工艺的限制,可用于高效个性化定制生物医用材料。近年来,医学上对骨骼修复和移植的个性化需求显著增加,增材制造可满足该定制化的需求,促使增材制造技术在生物医用材料领域占据重要地位。随着材料科学技术和计算机辅助技术(CAD/CAM)的发展,可用于增材制造的生物植入材料不再局限于钛系、钽系、钴铬钼等合金,聚醚醚酮、磷酸钙盐等非金属类材料因良好的生物相容性也得到了广泛应用,增材制造技术制备仿生人造骨植入体成为新的研究热点。本文介绍了增材制造技术的原理,对激光、电子束、光固化等增材制造技术进行了比较,并阐述了增材制造在生物植入体和医疗器械方面的应用现状,对增材制造技术在医疗领域的应用及发展做了展望。  相似文献   

4.
增材制造技术又称3D打印,自提出以来受到国内外学者的广泛关注。金属材料的增材制造相比于其他材料难度较大,对于原材料、工艺控制等方面的要求更严苛。针对国内的增材制造用粉末生产及使用情况,本文从金属粉末粒度分布、形貌和流动性检测方法三个方面,结合实际生产、检测的经验,分别讨论了各种粉末检测方法对于增材制造技术的适用性和可行性。  相似文献   

5.
钛合金因其具有高的比强度、比刚度和良好的耐腐蚀性能,广泛应用于航空航天、汽车以及增材制造等领域。球形钛合金粉末是增材制造的核心原料,对3D打印产品的质量起着关键作用。目前增材制造用钛合金粉末的主要制备方法包括电极感应熔炼气雾化法(EIGA)、等离子旋转电极雾化法(PREP)和氢化脱氢—等离子球化联合法(HDH-PS)等,介绍这些制备方法的原理及研究现状,探究钛合金球形粉末制备技术的影响因素,进而展望增材制造用钛合金粉末技术未来的发展方向。  相似文献   

6.
球形粉末是增材制造、粉末冶金、注射成型等制备工艺的重要原料,其成分、粒度、球形度、空心粉率等是影响最终构件性能的关键因素。本文详细介绍了真空感应熔炼气雾化法、电极感应熔炼气雾化法以及等离子旋转电极雾化法等三种可用于增材制造的工程化高温合金球形粉末的制备技术,分析了这三种制粉工艺的特点,阐述了这三种制粉工艺的研发进展,探讨了三种制粉工艺所制备的粉末缺陷形成原因及控制方法,并提出了增材制造用高温合金粉末制备技术的发展趋势。  相似文献   

7.
难熔金属材料具有良好的高温力学性能和高温稳定性,常用于制备耐热部件,被广泛应用于航空航天、国防工业等领域。然而,难熔金属的熔点比较高,室温塑性延展性能不佳,使用传统的加工方式制备复杂结构件时存在加工困难等问题。增材制造作为一项新兴的技术,基于三维模型数据,以激光、电子束、特殊波长光源、电弧及其多种组合作为能量源,利用“离散-堆积”成形原理制造实体部件,制备零件的尺寸可以从微米级到米级,为难熔金属复杂结构件的制备提供了新的途径。本文首先概述了增材制造技术的分类、特点及其应用,然后介绍了增材制造技术制备难熔金属的现状以及目前存在的主要问题,最后综述了增材制造工艺调控难熔金属材料微观组织和力学性能的研究进展,并对增材制造技术在难熔金属领域应用的发展方向进行了展望。  相似文献   

8.
增材制造技术是一种不受加工工具限制成型复杂形状产品的添加式制造技术。简要概述了利用增材制造技术(AM)-3D打印成形粘结钕铁硼磁体的基本过程,比较了传统成形和3D打印成形两种方法制造粘结钕铁硼磁体的优点和不足,着重介绍了粘结钕铁硼磁制件的3种3D打印方法:三维打印粘结成型(3DP)、大区域增材制造技术(BAAM)、直接喷墨打印成型(Direct-write 3DP),并指出利用3D打印成型粘结钕铁硼磁体的发展趋势。3D打印作为一种先进的制造技术,可以实现复杂形状钕铁硼产品的近净成形,不需后续的机械加工,大大节约了资源,降低了能耗,提高了生产效率,可以制造传统方法难以制造的复杂结构制件。但是利用3D打印技术成型钕铁硼产品也存在一些困难,比如对打印粉体的尺寸、形状及成分要求较高、适合打印的粉体粘结剂以及如何提高粉体的固含量等问题,这些都将是今后磁性材料3D打印中需要解决的问题。  相似文献   

9.
日前,由中机生产力促进中心牵头制定的ISO/IEC 23510:2021《信息技术3D打印和扫描增材制造服务平台(AMSP)架构》正式发布,成为我国在增材制造领域牵头制定的第一项国际标准,标志着我国在增材制造领域国际标准化工作实现零的突破。增材制造作为战略性新兴产业的重要组成部分,融合了计算机辅助设计、材料加工与成型技术。  相似文献   

10.
电弧增材制造(WAAM)技术将电弧作为热源,具备熔敷效率高、设备简单、成本较低的特点,在制备大型零件时具有更大的优势。基于3种典型电弧热源的电弧增材制造方法包括熔化极电弧(GMA)增材制造、非熔化极电弧(GTA)增材制造与等离子弧(PA)增材制造。GMA增材制造技术拥有熔敷效率高、易于实现等特点,特别是基于冷金属过渡(CMT)的增材制造技术取得了重要进展,主要缺点在于熔滴过渡对熔池的显著冲击易影响成形精度和质量。GTA增材制造技术具有最为稳定的电弧燃烧过程,具有无飞溅、成形精度与质量高等显著优势,特别适合于铝合金、镍基合金、钛合金等材料的增材制造。PA增材制造与GMA增材制造与GTA增材制造相比,存在能量密度高、集束性好等优点。但是PA合理参数区间较窄、参数匹配复杂、热输入大等缺点也限制了其在该领域的应用。由于增材制造过程使得后堆积层存在反复加热与冷却,增材制造成形件组织存在上中下区域的差异以及熔敷方向及垂直于熔敷方向性能的各向异性。增材制造金属材料的热循环过程对于晶粒尺寸、熔覆层性能以及成形精度非常关键,分别可以通过改变成形件冷却条件、改变熔池凝固条件对组织性能进行改善。新型电弧热源...  相似文献   

11.
增材制造可以制造通过传统方法难以制造的复杂部件,因此在航空工业等领域中得到了大规模的应用。然而,增材制造成形部件的尺寸和几何精度以及表面质量低于传统方法成形的部件,阻碍了增材制造的进一步应用。增减材混合制造将增材制造与传统的加工手段结合,对增材制造成形的部件进行高精度数控加工,以改善部件表面光洁度以及零件的几何和尺寸精度。本文阐述了增减材混合制造的技术原理和研究进展,并指出了未来的发展方向。   相似文献   

12.
难熔高熵合金(RHEAs)是一类以Nb, Mo, W, Ta等难熔元素为主元的高熵合金(HEAs),具有简单的相结构和优异的高温综合力学性能,在航空航天、核能和石油等领域具有广阔的应用前景。由于RHEAs室温脆性难加工的特点,传统的工艺方法在制备RHEAs时存在制造过程复杂、周期长、材料利用率低、成本高等诸多问题,极大地限制了RHEAs的发展和应用。激光增材制造(LAM)技术因其能实现复杂零件的直接自由成形,而逐渐成为制备RHEAs的一条重要途径,为RHEAs的研发和应用带来了新的契机。对近年来激光增材制造RHEAs的研究现状进行了综述,介绍了激光增材制造RHEAs的成形特性,分析了RHEAs打印件的相组成和显微组织特征,总结了打印件的显微硬度、压缩强度以及耐磨、耐腐蚀和抗高温氧化性能。最后归纳出目前激光增材制造RHEAs的现存问题,并对其未来的发展趋势进行了展望。  相似文献   

13.
随着增材制造技术的日益成熟,其在钢铁材料制备领域逐渐崭露头角。首先介绍了国内外增材制造技术的发展现状,简述了目前增材制造金属材料的前沿技术;之后汇总了大量增材制造钢铁材料的研究成果,包括不锈钢粉末的制备技术、增材制造不锈钢改性工艺、先进钢铁丝材的增材制造等;从多个角度回顾了近几年来国内外增材制造钢铁材料的研究进展。基于对现有研究成果的总结,指出了增材制造技术在未来钢铁材料领域的重要意义,并为中国钢铁材料增材制造技术的发展提出了展望与规划。  相似文献   

14.
李有余  余力  高扬 《粉末冶金工业》2024,(1):140-147+159
钛合金具有高强轻质耐高温的特点,因而成为拥有巨大前景的航空结构材料。传统的机械制造工艺难度大、成本高,限制了钛合金的应用。增材制造(AM)作为新兴的先进制造技术,可以通过逐层加工的方式制造出具有较高三维精度的金属部件,从而实现钛合金的近净形加工。因此,首先介绍了球形钛合金粉末制备技术,其中包括等离子旋转电极雾化法(PREP)、电极感应气体雾化法(EIGA)、等离子体雾化(PA)和等离子球化技术(PS)等,对比4种球形钛合金粉末的制备技术和优缺点,以及在航空增材制造的应用,包括激光选区熔化(SLM)、电子束选区熔化(EBSM)和激光熔化沉积(LMD)等,总结了不同钛合金粉末制备技术在航空增材制造的应用特点和发展趋势,并指出钛合金增材制造未来发展的关键是低间隙钛粉的制备,增材制造设备高精度、高效率和大型化将是未来的发展趋势。  相似文献   

15.
通过清洁炼钢、热轧、拉拔工艺开发了增材制造专用的低合金钢丝,并用此钢丝进行了激光3D打印试验.打印件的力学性能分别为屈服强度857 MPa、抗拉强度930 MPa、延伸率18%,-40℃的平均低温冲击韧性达到了118 J,可以满足900 MPa级海工用增材制造的使用.通过扫描电镜、透射电镜对打印件微观组织的分析,发现微...  相似文献   

16.
镍铝青铜合金因具有较好的延展性、强度、断裂韧性及耐腐蚀性能而广泛应用于石油和天然气泵系统、航空和船舶工业应用等领域。传统铸造工艺制备的镍铝青铜具有复杂的物相组成,在严苛的服役环境中容易发生严重的腐蚀失效。近年来,增材制造技术在铜合金加工领域获得迅猛的发展,基于快速非平衡凝固特性,能够通过显微组织调控来提高铜合金的机械性能,同时有望提升其在严苛服役环境中的耐腐蚀性能。本文列举了不同增材制造技术制备的镍铝青铜合金,围绕其显微组织、力学性能以及腐蚀行为展开深入探讨,进一步对比分析了不同制备工艺参数以及热处理工艺与镍铝青铜显微组织的关联机制及其对腐蚀行为的影响规律。本文通过构建增材制造镍铝青铜制备工艺-显微组织特征-耐腐蚀性能之间的内禀关系,能够为高性能增材制造镍铝青铜的设计优化及应用提供理论基础和实践指导。  相似文献   

17.
本文基于增材制造工艺对金属粉末的应用需求,概述了几种国际上高性能球形金属粉末制备技术,包括真空感应气体雾化(VIGA)、电极感应气体雾化(EIGA)、等离子雾化(PA)、等离子球化(PS)和等离子旋转电极(PREP),对比了气雾化粉末和旋转电极粉末用于增材制造零部件显微组织和力学性能差异。重点论述了粉末制备技术的发展趋势,为粉末制备技术的选择和增材制造选材、用材提供参考。  相似文献   

18.
金属增材制造技术自诞生以来,经快速发展,已在诸多领域得到了广泛的应用,被列入决定未来经济的十二大颠覆性技术之一。基于丝材的金属增材制造技术由于其沉积效率高、制造成本低、制造周期短和材料利用率高,近年来成为国内外研究和应用的热点。本文以钛合金丝材为原材料,针对广泛采用的电弧/等离子弧熔丝、电子束熔丝和激光熔丝增材制造技术,分别从成形工艺参数优化、宏微观组织结构分析、后热处理组织性能调控及专用原材料开发等方面所取得的最新研究成果进行了详细论述。在此基础之上,介绍了基于钛合金丝材的增材制造在工程化应用及相关标准规范的制定情况。最后,指出钛合金丝材增材制造技术在组织和性能等方面存在的固有不足,提出了采用锻造+增材复合成形复合后处理和专用丝材研制等方法,并建立有别于传统锻造和铸造的新标准体系,有助于推广其在各领域的大规模应用。  相似文献   

19.
杨广宇  贾文鹏  贾亮  刘楠 《稀有金属》2023,(10):1453-1459
结合钨合金的特性及增材制造过程对粉末均匀性、稳定性的要求,以微米级球形钨粉和纳米级铌粉为原料,采用行星球磨工艺制备了可用于增材制造的W-Nb复合型粉末,利用球磨过程中的作用力,将纳米粉末分散并均匀吸附在球形钨粉表面,形成面包覆结构;分析了球磨时间对粉末形貌及物理性能的影响。结果表明,随着球磨时间的延长粉末主要发生以下变化:(1)球形钨粉形貌不变,纳米铌粉之间存在明显的团聚;(2)球形钨粉形貌不变,纳米铌粉充分分散且在球形钨粉表面吸附;(3)吸附在球形钨粉表面的铌粉之间发生一定的冷焊,球形钨粉表面开始出现破损;(4)铌在钨中发生一定的固溶,但是球形钨粉大量破损。采用粉床型电子束增材制造技术对复合粉末的工艺适应性进行了验证,复合粉末铺展均匀、稳定,成形样品成分均匀,晶界处不存在明显的铌元素富集。  相似文献   

20.
增材制造是一种新兴技术,被誉为“第三次工业革命的重大标志”。光聚合是陶瓷材料增材制造最早出现、也是最重要的方法之一。本文简要描述了陶瓷材料光聚合增材制造的一般过程,介绍了氧化铝陶瓷光聚合的工艺路线,并从科研方向、组织模式、政策支持等方面提出了发展建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号