首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
In this paper, we report color stable phosphorescent white organic light-emitting diodes (OLEDs) based on a double emissive layer (EML) structure composed of blue and red/green phosphorescent units. Deep hole trapping situation of red and green dopants at the red/green EML could induce less voltage dependent white spectral characteristics by restricting the change of exciton generation zone. A wide band-gap host material, 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), was used for achieving such deep-trap generation. Fabricated phosphorescent white OLED shows a slight color coordinate change of (?0.002, +0.002) from 1000 cd/m2 to 5000 cd/m2 with power efficiency of 38.7 lm/W and current efficiency of 46.4 cd/A at 1000 cd/m2. In addition, negligible color changes were observed by delaying red dopant saturation time using optimum red dopant concentration.  相似文献   

2.
We demonstrate simplified doping-free orange phosphorescent organic light-emitting diodes (OLEDs) based on ultrathin emission layer. The optimized orange device has the maximum current efficiency of 52.1 cd/A and power efficiency of 36.3 lm/W, respectively. Efficient simplified doping-free white OLEDs employing blue and orange ultrathin emission layers have excellent color stability, which is attributed to the avoidance of the movement of charges recombination zone and no differential color aging. One white device exhibits high efficiency of 33.6 cd/A (30.1 lm/W). Moreover, the emission mechanism of doping-free orange and white OLEDs is also discussed.  相似文献   

3.
We investigated some effective device designs and fabrication methods for long operation-lifetime all-solution-processed Phosphorescent OLEDs (PhOLEDs) and fluorescent OLEDs with mixed-hosts system and thin Poly [(9, 9-dioctylfluorenyl-2, 7-diyl)-co-(4, 4′-(N-(4-sec-butylphenyl) diphenylamine)] (TFB). The all-solution-processed green PhOLEDs had high current efficiency (30.3 cd/A) and long operation-lifetime. The best half-lifetime of green PhOLEDs with thin HTL, MH-hosts EML and optimized deposition was 310 h at an initial luminance 1000 cd/m2, 250 h at an initial luminance 500 cd/m2 for green PhOLEDs with thin HTL, and MH-hosts EML, and the lifetime of triple layer PhOLEDs device was only 0.5 h for the same materials. The red PhOLEDs exhibited a high current efficiency (10.93 cd/A) and half-lifetime with 157.9 h at an initial luminance 500 cd/m2. For the blue fluorescent OLEDs, the thin polymer TFB, mixed-hosts EML, double EMLs and optimization deposition yield a high current efficiency (5.68 cd/A) and long operation-lifetime with 117.7 h at an initial luminance 500 cd/m2. Single host fluorescent device had half-lifetime of 73.5 h only at an initial luminance 100 cd/m2. Finally, by doping red emitter Rubrene into stable blue device, we achieved soft yellow OLEDs with high efficiency (10.87 cd/A) and 8 fold improvement operation-lifetime (1200 h). We believe that such all-solution-processed OLEDs which showed greatly improved operational lifetimes would be suitable for the indoor supportive lighting with natural colors.  相似文献   

4.
In this work, the extensively used opaque metal cathodes of the conventionally structured OLEDs were replaced with the widely used transparent electrode indium tin oxide (ITO) for solution-processed transparent organic light-emitting diode (T-OLED). A new solution-processable electron transport layer (ETL), aside from facilitating the efficient injection of electrons into the T-OLED, protected the organic emission layer (EML) of the T-OLED against the plasma damage during top ITO cathode sputter deposition. The newly designed solution-processed ETL was the composite of the zinc oxide nanoparticles (ZnO-NPs), and cesium carbonate-doped ethoxylated polyethyleneimine (d-PEIE) with the semi-hydrophilic poly (methyl methacrylate) (PMMA) interlayer coated on the EML insured the good wettability and contact of the hydrophilic ETL with the hydrophobic EML. The solution-processed T-OLED emitted the total maximum luminance of about 2417 cd/m2 (bottom side emission at 1455 cd/m2 and top emission at 962 cd/m2), total maximum current efficiency at 3.12 cd/A (bottom and top emissions at about 1.78 and 1.34 cd/A, respectively), and total maximum power efficiency at 1.64 l m/W (bottom and top emissions at about 0.95 and 0.69 l m/W, respectively) while having a very high optical transmittance of around 85% at 550 nm light wavelength.  相似文献   

5.
A hybrid white organic light-emitting diode (WOLED) with an emission layer (EML) structure composed of red phosphorescent EML/green phosphorescent EML/spacer/blue fluorescent EML was demonstrated. This hybrid WOLED shows high efficiency, stable spectral emission and low efficiency roll-off at high luminance. We have attributed the significant improvement to the wide distribution of excitons and the effective control of charge carriers in EMLs by using mixed 4,4′,4″-tri(9-carbazoyl) triphenylamine (TCTA) and bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp2) as the host of phosphorescent EMLs as well as the spacer. The bipolar mixed TCTA:Bepp2, which was proved to be a charge carrier switch by regulating the distribution of charge carriers and then the exciton recombination zone, plays an important role in improving the efficiency, stabilizing the spectrum and reducing the efficiency roll-off at high luminous. The hybrid WOLED exhibits a current efficiency of 30.2 cd/A, a power efficiency of 32.0 lm/W and an external quantum efficiency of 13.4% at a luminance of 100 cd/m2, and keeps a current efficiency of 30.8 cd/A, a power efficiency of 27.1 lm/W and an external quantum efficiency of 13.7% at a 1000 cd/m2. The Commission Internationale de l’Eclairage (CIE) coordinates of (0.43, 0.43) and the color rendering index (CRI) of 89 remain nearly unchanged in the whole range of luminance.  相似文献   

6.
器件结构是影响有机发光器件(OLED)性能的重要因素之一.采用8-hydroxyquinoline-aluminum(AlQ)作为发光层(EML)和电子传输层(ETL),polyvinylcarbazole (PVK)作为空穴传输层(HTL),制备了具有有机小分子/聚合物异质结结构的OLED器件,通过其电压-电流-发光亮度(V-J-B)特性测试,研究了HTL的引入及其膜厚对器件性能的影响.实验结果表明,HTL的引入有效地改善了OLED的光电性能,同时HTL膜厚对器件性能具有显著影响,当HTL膜厚为20 nm时,所制备的OLED器件具有最小的驱动电压和启亮电压、最大的发光亮度和发光效率.
Abstract:
The device construction plays an important role in improving the optoelectronic performance of organic electroluminescence devices (OLEDs). Heterojunction OLEDs with a configuration of glass/ITO/PVK/AlQ/Mg/Al were fabricated by using 8-hydroxyquinoline-aluminum (AlQ) as the emission layer (EML) and electron transport layer (ETL) and polyvinylcarbazole (PVK) as the hole transport layer (HTL). The effect of the HTL thickness on the performance of OLEDs was investigated with respect to the driving voltage, turn-on voltage, electroluminescence brightness and efficiency of the devices. Experimental results demonstrate that the optical and electrical properies of OLEDs are closely related to the HTL thickness. The device fabricated with the HTL thickness of 20 nm possesses the best photoelectric properties such as the minimum driving voltage and turn-on voltage, and the maximum electroluminescence brightness and efficiency.  相似文献   

7.
Hole transport materials are critical to the performance of organic light-emitting diodes (OLEDs). While 1,1-bis(di-4-tolylaminophenyl)cyclohexane (TAPC) with a high triplet energy is widely used for high efficiency phosphorescent OLEDs, devices using TAPC as a hole transport layer (HTL) have a short operating lifetime due to the build-up of trapped charges at the TAPC/emitting layer (EML) interface during device operation. In this work, to solve the operating stability problem, instead of using conventional HTLs, we use a(fac-tris(2-phenylpyridine)iridium (III))(Ir(ppy)3) doped layer as an HTL to replace the conventional HTLs. Because of the hole injecting and transporting abilities of the phosphorescent dye, holes can be directly injected into the emitting layer without an injection barrier. OLEDs based on a phosphorescent dye-doped HTL show significant improvement in operational stability without loss of efficiency.  相似文献   

8.
The relationship between thickness of electron transport layer (ETL) and device performance of organic light-emitting diodes (OLEDs) was investigated. Especially, we prepared various OLEDs by varying the thickness of ETL to investigate the difference of device performance. Very interestingly, the device efficiency of green phosphorescent organic light emitting diodes (PHOLEDs) was significantly improved when the thickness of ETL was optimized even though we did not change any materials for such devices except that we applied highly conductive Li doped ETL. This means that the only one factor which is associated with an improvement of device efficiency could be originated from the constructive optical interference. As a result, the simple modification of PHOLEDs only by changing the optical thickness condition causes a dramatic improvement of current efficiency (up to 82.4 cd/A) as well as external quantum efficiency (EQE, up to 23.8%), respectively. Those values correspond to the much more improved ones (by ∼34.4%) compared to those obtained from the normal devices with thin ETL as a reference.  相似文献   

9.
A blue organic light emitting device (OLED) with improved efficiency and good color purity is reported. The highest occupied molecular orbital (HOMO) level of the hole transport layer (HTL) and that of the emissive layer (EML) differs by 0.3 eV. This energy level mismatch confines the carriers at the HTL/EML interface. Conventional devices have only one HTL/EML interface, with a current efficiency of 2.9 cd/A. Without adding a separate hole blocking layer, incorporating multi-layers of the same HTL and EML increases this efficiency to 5.8 cd/A, with only a small increase in operating voltage yielding increased power efficiency also. But, there are an optimum number of layers, beyond which efficiency loss results. Also, including the multilayer structure simultaneously improves the blue color co-ordinates. To gain insight into the role of multilayer structures in modifying charge transport and recombination zone a simulator was developed. The simulated results could qualitatively explain the experimental observations.  相似文献   

10.
Small molecule based white organic light-emitting diodes were fabricated by using an alignment free mask patterning method. A phosphorescent red/green emitting layer was patterned by a metal mask without any alignment and a blue phosphorescent emitting layer was commonly deposited on the patterned red/green emitting layer. A white emission could be obtained due to separate emission of red/green and blue emitting layers. A maximum current efficiency of 30.7 cd/A and a current efficiency of 26.0 cd/A at 1000 cd/m2 were obtained with a color coordinate of (0.39, 0.45). In addition, there was little change of emission spectrum according to luminance because of balanced red/green and blue emissions.  相似文献   

11.
Efficient red, orange, green and blue monochrome phosphorescent organic light-emitting diodes (OLEDs) with simplified structure were fabricated based on ultrathin emissive layers. The maximum efficiencies of red, orange, green and blue OLEDs are 19.3 cd/A (17.3 lm/W), 45.7 cd/A (43.2 lm/W), 46.3 cd/A (41.6 lm/W) and 11.9 cd/A (9.2 lm/W). Moreover, efficient and color stable white OLEDs based on two complementary colors of orange/blue, three colors of red/orange/blue, and four colors of red/orange/green/blue were demonstrated. The two colors, three colors and four colors white OLEDs have maximum efficiencies of 30.9 cd/A (27.7 lm/W), 30.3 cd/A (27.2 lm/W) and 28.9 cd/A (26.0 lm/W), respectively. And we also discussed the emission mechanism of the designed monochrome and white devices.  相似文献   

12.
A novel thermally activated delayed fluorescence (TADF) molecule, PHCz2BP, is synthesized and used to construct high performance organic light‐emitting diodes (OLEDs) in this work. PHCz2BP is not only the neat emitting layer for efficient sky‐blue OLED, with very high peak external quantum efficiency/power efficiency (EQE/PE) values of 4.0%/6.9 lm W?1, but also acts as a host to sensitize high‐luminance and high‐efficiency green, orange, and red electrophosphorescence with the universal high EQEs of >20%. More importantly, two hybrid white OLEDs based on the double‐layer emitting system of PHCz2BP:green phosphor/PHCz2BP:red phosphor are achieved. To the best of the knowledge, this is the first report for three‐color (blue–green–red) white devices that adopt a TADF blue host emitter and two phosphorescent dopants without any other additional host. Such simple emitting systems thus realized the best electroluminescent performance to date for the WOLEDs utilizing the hybrid TADF/phosphor strategy: forward‐viewing EQEs of 25.1/23.6% and PEs of 24.1/22.5 lm W?1 at the luminance of 1000 cd m?2 with the color rendering indexes of 85/87 and warm‐white Commission Internationale de L'Eclairage coordinates of (0.41, 0.46)/(0.42, 0.45), indicating its potential to be used as practical eye‐friendly solid‐state lighting in future.  相似文献   

13.
在陷阱电荷限制电流传导理论的基础上,提出了双层有机电致发光器件的数值模型,研究了结构为"阳极/空穴输运层(HTL)/发光层(EML)/阴极"的器件中电流密度和量子效率随有机层的特征陷阱能量、陷阱密度和载流子迁移率的依赖关系. 研究发现,对于给定的HTL和EML的特征陷阱能量、陷阱密度和载流子迁移率,存在一个最优的HTL和EML之间的厚度比率,在此最优厚度比下,器件的电流密度和量子效率达到最大.通过有机层厚度的优化,器件的电流密度和量子效率可提高多达两个数量级.另外,还研究了最优厚度比随有机层特征陷阱能量、总陷阱密度和载流子迁移率之间的定量关系.  相似文献   

14.
We report efficient single layer red, green, and blue (RGB) phosphorescent organic light-emitting diodes (OLEDs) using a “direct hole injection into and transport on triplet dopant” strategy. In particular, red dopant tris(1-phenylisoquinoline)iridium [Ir(piq)3], green dopant tris(2-phenylpyridine)iridium [Ir(ppy)3], and blue dopant bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium [FIrpic] were doped into an electron transporting 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) host, respectively, to fabricate RGB single layer devices with indium tin oxide (ITO) anode and LiF/Al cathode. It is found that the maximum current efficiencies of the devices are 3.7, 34.5, and 6.8 cd/A, respectively. Moreover, by inserting a pure dopant buffer layer between the ITO anode and the emission layer, the efficiencies are improved to 4.9, 43.3, and 9.8 cd/A, respectively. It is worth noting that the current efficiency of the green simplified device was as high as 34.6 cd/A, even when the luminance was increased to 1000 cd/m2 at an extremely low applied voltage of only 4.3 V. A simple accelerated aging test on the green device also shows the lifetime decay of the simplified device is better than that of a traditional multilayered one.  相似文献   

15.
双层有机电致发光器件有机层厚度优化的数值研究   总被引:4,自引:2,他引:2  
彭应全  张磊  张旭 《半导体学报》2003,24(5):454-460
在陷阱电荷限制电流传导理论的基础上,提出了双层有机电致发光器件的数值模型,研究了结构为“阳极/空穴输运层( HTL) /发光层( EML) /阴极”的器件中电流密度和量子效率随有机层的特征陷阱能量、陷阱密度和载流子迁移率的依赖关系.研究发现,对于给定的HTL 和EML 的特征陷阱能量、陷阱密度和载流子迁移率,存在一个最优的HTL 和EML 之间的厚度比率,在此最优厚度比下,器件的电流密度和量子效率达到最大.通过有机层厚度的优化,器件的电流密度和量子效率可提高多达两个数量级.另外,还研究了最优厚度比随有机层特征陷阱能量、总陷阱密度和载流子迁移率之间的  相似文献   

16.
Phosphorescent white organic light emitting diodes (WOLEDs) with a multi-layer emissive structure comprising two separate blue layers and an ultra-thin red and green co-doped layer sandwiched in between have been studied. With proper host and dopant compositions and optimized layer thicknesses, high-performance WOLEDs having a power efficiency over 40 lm/W at 1000 cd/m2 with a low efficiency roll-off have been produced. Through a systematic investigation of the exciton confinement and various pathways for energy transfer among the hosts and dopants, we have found that both the ultra-thin co-doped layer and two blue emitting layers play a vital role in achieving high device efficiency and controllable white emission.  相似文献   

17.
分别在ITO与NPB间加入高迁移率的m-MTDATA:x%4F-TCNQ来增强器件的空穴注入,在阴极和发光层之间加入高迁移率的Bphen:Liq层增强器件的电子注入,制备了结构为ITO/m-MTDATA:x%4F-TCNQ/NPB/Alq_3/Bphen:Liq/LiF/Al的有机发光器件.研究了传输层的单载流子器件行为,同时,由于注入的电子和空穴数量偏离平衡,器件的整体效率也会受到影响,在实验中通过调节4F-TCNQ的质量百分比,来调控空穴的注入和传输,使载流子达到了较好的平衡.器件的最大电流效率和流明效率分别达到了6.1 cd/A和5.2 lm/W.  相似文献   

18.
A high efficiency pure white phosphorescent organic light-emitting diode was developed by combining a deep blue emitting phosphorescent dopant material with red/green phosphorescent emitting materials. A simple stack structure of blue/red:green was used and tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium was used as a deep blue emitting phosphorescent dopant. A pure white emission with a color coordinate of (0.29, 0.31) and a very high current efficiency of 28 cd/A was obtained after managing the device architecture of the all phosphorescent white devices.  相似文献   

19.
Doping-free organic light-emitting diodes (OLEDs) have attracted continuous attention owing to reduced phase separation, better repeatability, and low cost. Despite demonstrating great potential for white OLEDs (WOLEDs), development of phosphorescent materials capable of achieving high performance with low voltage, high luminance, and low efficiency roll-off simultaneously, still remains a significant challenge. Herein, we design three orange-red Ir(III) phosphors employing functionalized 1,2-diphenylbenzimidazole as main ligands. Clear relationship between structures and electroluminescence (EL)-performances has been established by comprehensively studying their emission properties and intrinsic carrier transporting abilities. Designed phosphor SFIrbiq with spirobifluorene moiety showing negligible intermolecular interactions and balanced carrier transporting ability, not only achieves favorable monochromatic doping-free device but also high-performance doping-free WOLEDs. Optimized WOLED realizes low voltages (2.5 V at 1 cd m−2, 3.3 V at 100 cd m−2, and 4.2 V at 1000 cd m−2), maximum brightness of 34 505 cd m−2 and efficiencies of 24.2 cd A−1, 21.7 lm W−1, 10.3%. Such doping-free hybrid WOLED also achieves low efficiency roll-off of 5% for external quantum efficiency (EQE) at 1000 cd m−2. The device performance can be further improved by employing doping-free all-phosphorescent device structure, achieving maximum efficiencies of 33.3 cd A−1, 32.4 lm W−1, and 16.9%. The results are promising among reported doping-free three-color WOLEDs, paving a feasible way to development of efficient Ir(III) phosphors and doping-free WOLEDs.  相似文献   

20.
超微OLED的制备及其光电特性的研究   总被引:3,自引:3,他引:0  
为了实现高亮度有机电致发光器件(OLED)及其尺寸的微型化,采用接触式光刻技术,通过真空热蒸镀制备了具有不同掩膜版结构的OLED。器件的结构为玻璃衬底/ITO/LiF/空穴传输层(HTL,NPD)/发光层(EML,0.5-0.6vol%Rubrene:Alq3)/电子传输层(ETL,Alq3)/阴极,其中LiF作为绝缘层。分别制得发光面积为45μm×2mm的微细器件和直径为44μm的微小器件。实验研究了其光电特性,结果表明,4.5μm×2.0mm微细器件的最大电流密度为7A/cm2,为44μm微小器件的最大电流密度为40A/cm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号