首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertical InGaN-based light-emitting diodes (LEDs) were fabricated with a Si substrate using Ag paste as bonding layer. Vertical LEDs with Ag paste bonding layer were bonded with Si substrate at a low temperature of 140 °C. In addition to the low-temperature bonding process, the soft property of Ag paste could better alleviate thermal stress compared with conventional eutectic metal bonding layer such as Au–Sn. Under the same test conditions, these two LEDs showed similar optical and electrical properties and reliability. However, LEDs with Ag-paste bonding layer were fabricated through a low-temperature bonding process. The characteristic of soft solder enables a relatively wider process window, such as bonding pressure and temperature, and a higher yield as compared with the vertical LEDs with Au–Sn eutectic bonding layer.  相似文献   

2.
The originality of this work consists in printing on ceramic tapes conductive silver tracks that reach a low resistivity by flexography process. Flexography is a solution for the mass production of multimaterial microdevices offering a huge potential of commercialisation in the near future. In order to test the flexography printing process for microelectronic application on Low Temperature Cofired Ceramic (LTCC) tapes, a screen printing paste was optimised to reach flexography printing requirements. Ink with 30% silver per weight was prepared and printed by flexography, roll to roll (R2R) process, on LTCC substrates. Three to five print passes were performed. Printed lines were sintered during 10 min at a peak temperature of 850 °C under normal air atmosphere. Conductive lines, with a mean width of 190 μm, a mean thickness of 1.50 μm and a resistivity of 2.8 × 10?8 Ω m close to bulk silver resistivity, were achieved after sintering.  相似文献   

3.
In this work, a novel foil-based transient liquid phase bonding process has been used to mount the SiC Schottky diodes. The Sn–Ag TLP interlayer material was produced in the form of preforms of multilayer foils, using electrochemical deposition. The foils were designed to keep the overall composition of Ag and Sn about 80% and 20% respectively. The optimized TLP bonding process parameters were used during the assembly process. The die-attachment characterizations revealed that resulting intermetallic compounds (Ag3Sn and ζ) have melting point beyond 480 °C. The die-attachment produced low bending stresses, while heated from 30 °C to 400 °C. The reliability of Sn–Ag TLP bonded samples was studied during passive temperature cycling and during active power cycling. During power cycling, the crack rates were determined by measuring the crack lengths of the TLP bonded joints after failure. The failure criteria were set to be an increase of diode's forward voltage by 10% since the start of the power cycling tests. The thermo-mechanical simulations were performed to determine the damage parameter i.e. strain range amplitude ∆ εp. Based on mechanical characterization of the TLP bonded layers, a plastic material model was used. The crack propagation rates were modeled using Paris' Law. Based on comparisons with state-of-the-art silver sintering technique, it can be stated that the TLP bonding is a promising die-attachment technique and its power cycling reliability is similar to silver sintering.  相似文献   

4.
Metallization multilayers on the back side of a power device were focused in this study. Si wafers coated with high melting point metals were exposed at 300 °C for 300 h to investigate diffusion condition of the metallization layer. We developed and examined the thermal stability of die bonding material (Au paste) including sub–micrometer–sized Au particles. Auger electron spectroscopy was applied to observe the atomic composition of the multilayers in depth direction after the high temperature aging. Surface morphology was observed using optical microscope and scanning electron microscope. While atomic composition on Ti/Au changed drastically after the high temperature aging, other multilayers maintained their metallization composition. However, the surface morphology was slightly changed on Ti/Ru/Au, W/Au, and Ta/Au. Bond strength on the Ti/Pt/Au kept over 40 MPa with unified bonding layer after exposing at 300 °C for 1000 h.  相似文献   

5.
High reliability has become one of the crucial requirements for portable electronic devices, due to the high dependence of their radio frequency (RF) characteristics on the end-user's surroundings. The RF characteristics of screen-printed silver (Ag) circuits were investigated after a steady-state temperature and humidity storage test. A conductive paste containing Ag nanoparticles was screen-printed onto a silicon (Si) substrate and then sintered at 250 °C for 30 min in air. The printed Ag circuits were placed in a chamber at 85 °C/85% relative humidity (RH) for various durations: 100, 300, 500, 1000 h. The microstructural evolution and thickness profiles of the Ag circuits were observed with field emission scanning electron microscopy and α-step, respectively. The oxidation of the printed Ag circuit surface was analyzed with Auger electron spectroscopy. A network analyzer and Cascade's probe system in the frequency range of 40 MHz to 40 GHz were employed to measure the scattering parameters of the Ag circuits. The experimental results showed that the insertion losses at higher frequencies increased with increasing durations of exposure to the 85 °C/85% RH environment, due to the thicker specific layer for oxidation on the circuit surfaces. The oxide layer was the dominant factor affecting the RF characteristics of the screen-printed Ag thin circuits. Therefore, it is essential to control the oxidation of printed circuits for versatile RF applications.  相似文献   

6.
We have investigated Ag(200 nm)/AgAl(100 nm) ohmic contacts to p-type GaN for near-UV (405 nm) flip-chip light-emitting diodes (LEDs). It is shown that the use of an AgAl alloy capping layer (with 8 at% Al) results in better electrical and optical properties as compared to single Ag contacts when annealed at 430 °C. For example, Ag/AgAl (8 at% Al) contacts give specific contact resistance of 4.6×10–4 Ω cm2 and reflectance of 90% at a wavelength of 405 nm. However, use of an AgAl (with 50 at% Al) layer is not effective. LEDs fabricated with the Ag/AgAl (8 at% Al) reflectors produce higher light output as compared with the ones with single Ag reflectors. Ohmic mechanisms of the Ag/AgAl (8 at% Al) contacts are described and discussed.  相似文献   

7.
The growth, microstructure and electrical properties of in-situ nitrogen doped 3C–SiC (111) thin films for sensor applications are presented in this paper. These thin films are deposited at a pressure of 2.5 mbar and temperature of 1040 °C on thermally oxidized Si (100) substrates from methyltrichlorosilane (MTS) precursor using a hot wall vertical low pressure chemical vapor deposition (LPCVD) reactor. Ammonia (NH3) is used as the nitrogen doping gas. The sensor response depends on chemical composition, structure, morphology and operating temperature. The above properties are investigated for all in situ nitrogen doped (0, 9, 17 and 30 at% of nitrogen) 3C–SiC thin films using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and four probe method. The XRD patterns of the 3C–SiC thin films show a decrease in the crystallinity and intensity of the peak with increase in dopant concentration from 0 to 17 at%. AFM investigations show an improvement in the grain size of the nitrogen doped 3C–SiC thin films with increase in nitrogen concentration from 0 to 17 at%. The sheet resistance of nitrogen doped 3C–SiC thin films is measured by the four probe technique and it is found to decrease with increase in temperature in the range of 40–550 °C. The resistivity and average temperature coefficient of resistance (TCR) of doped 3C–SiC thin film deposited with 17 at% of nitrogen concentration are found to be 0.14 Ω cm and −103 ppm/°C, respectively and this can be used as a sensing material for high temperature applications.  相似文献   

8.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

9.
Various fine pitch chip-on-film (COF) packages assembled by (1) anisotropic conductive film (ACF), (2) nonconductive film (NCF), and (3) AuSn metallurgical bonding methods using fine pitch flexible printed circuits (FPCs) with two-metal layers were investigated in terms of electrical characteristics, flip chip joint properties, peel adhesion strength, heat dissipation capability, and reliability. Two-metal layer FPCs and display driver IC (DDI) chips with 35 μm, 25 μm, and 20 μm pitch were prepared. All the COF packages using two-metal layer FPCs assembled by three bonding methods showed stable flip chip joint shapes, stable bump contact resistances below 5 mΩ, good adhesion strength of more than 600 gf/cm, and enhanced heat dissipation capability compared to a conventional COF package using one-metal layer FPCs. A high temperature/humidity test (85 °C/85% RH, 1000 h) and thermal cycling test (T/C test, ?40 °C to + 125 °C, 1000 cycles) were conducted to verify the reliability of the various COF packages using two-metal layer FPCs. All the COF packages showed excellent high temperature/humidity and T/C reliability, however, electrically shorted joints were observed during reliability tests only at the ACF joints with 20 μm pitch. Therefore, for less than 20 μm pitch COF packages, NCF adhesive bonding and AuSn metallurgical bonding methods are recommended, while all the ACF and NCF adhesives bonding and AuSn metallurgical bonding methods can be applied for over 25 μm pitch COF applications. Furthermore, we were also able to demonstrate double-side COF using two-metal layer FPCs.  相似文献   

10.
We developed a reliable and low cost chip-on-flex (COF) bonding technique using Sn-based bumps and a non-conductive adhesive (NCA). Two types of bump materials were used for the bonding process: Sn bumps and Sn–Ag bumps. The bonding process was performed at 180 °C for 10 s using a thermo-compression bonder after dispensing the NCA. Sn-based bumps were easily deformed to contact Cu pads during the bonding process. A thin layer of Cu6Sn5 intermetallic compound was observed at the interface between Sn-based bumps and Cu pads. After bonding, electrical measurements showed that all COF joints had very low contact resistance, and there were no failed joints. To evaluate the reliability of COF joints, high temperature storage tests (150 °C, 1000 h), thermal cycling tests (−25 °C/+125 °C, 1000 cycles) and temperature and humidity tests (85 °C/85% RH, 1000 h) were performed. Although contact resistance was slightly increased after the reliability test, all COF joints passed failure criteria. Therefore, the metallurgical bond resulted in good contact and improved the reliability of the joints.  相似文献   

11.
We report a novel method to grow silver nanoparticle/zinc oxide (Ag NP/ZnO) thin films using a dual-plasma-enhanced metal-organic chemical vapor deposition (DPEMOCVD) system incorporated with a photoreduction method. The crystalline quality, optical properties, and electrical characteristics of Ag NP/ZnO thin films depend on the AgNO3 concentration or Ag content and annealing temperature. Optimal Ag NP/ZnO thin films have been grown with a AgNO3 concentration of 0.12 M or 2.54 at%- Ag content and 500 °C- rapid thermal annealing (RTA); these films show orientation peaks of hexagonal-wurtzite-structured ZnO (002) and face-center-cubic-crystalline Ag (111), respectively. The transmittance and resistivity for optimal Ag NP/ZnO thin films are 85% and 6.9×10−4 Ω cm. Some Ag NP/ZnO transparent conducting oxide (TCO) films were applied to InGaN/GaN LEDs as transparent conductive layers. The InGaN/GaN LEDs with optimal Ag NP/ZnO TCO films showed electric and optical performance levels similar to those of devices fabricated with indium tin oxide.  相似文献   

12.
The temperature dependent (30–550 °C) resistivity of zinc oxide (ZnO) has been studied by the standard four probe resistivity method. The room-temperature resistivity of the sample is measured as 0.75 M Ωm. Resistivity versus temperature plot of the sample shows normal NTCR (negative temperature coefficient of resistance) behavior up to 300 °C. However, a crossover from NTCR to a PTCR (positive temperature coefficient of resistance) behavior is observed at ~300 °C. The origin of the PTCR behavior is explained with the defects present in the ZnO annealed up to 550 °C. Temperature dependent S-parameter (positron annihilation line-shape parameter) indicates the formation of oxygen vacancy like defects in this temperature region. At the PTCR region, the activation energy for the electron conduction is calculated ~2.6 eV. This value is very close to the theoretically predicted defect level energy of 2.0 eV for oxygen vacancies present in ZnO.  相似文献   

13.
We have investigated the contact resistivity of GeCu2Te3 (GCT) phase change material to a W electrode using the circular transfer length method (CTLM). The contact resistivity ρc of as-deposited amorphous GCT to W was 3.9×10−2 Ω cm2. The value of ρc drastically decreased upon crystallization and crystalline GCT that annealed at 300 °C showed a ρc of 4.8×10−6 Ω cm2. The ρc contrast between amorphous (as-deposited) and crystalline (annealed at 300 °C) states was larger in GCT than in conventional Ge2Sb2Te5 (GST). Consequently, it was suggested from a calculation based on a simple vertical structure memory cell model that a GCT memory cell shows a four times larger resistance contrast than a GST memory cell.  相似文献   

14.
Pure and cadmium doped tin oxide thin films were deposited on glass substrates from aqueous solution of cadmium acetate, tin (IV) chloride and sodium hydroxide by the nebulizer spray pyrolysis (NSP) technique. X-ray diffraction reveals that all films have tetragonal crystalline structure with preferential orientation along (200) plane. On application of the Scherrer formula, it is found that the maximum size of grains is 67 nm. Scanning electron microscopy shows that the grains are of rod and spherical in shape. Energy dispersive X-ray analysis reveals the average ratio of the atomic percentage of pure and Cd doped SnO2 films. The electrical resistivity is found to be 102 Ω cm at higher temperature (170 °C) and 103 Ω cm at lower temperature (30 °C). Optical band gap energy was determined from transmittance and absorbance data obtained from UV–vis spectra. Optical studies reveal that the band gap energy decreases from 3.90 eV to 3.52 eV due to the addition of Cd as dopant with different concentrations.  相似文献   

15.
ZnO films were deposited on glass substrates in the temperature range of 350–470 °C under an atmosphere of compressed air or nitrogen (N2) by using ultrasonic spray pyrolysis technique. Structural, electrical and optical properties of the ZnO films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical two-probe and optical transmittance measurements. The ZnO films deposited in the range of 350–430 °C were polycrystalline with the wurtzite hexagonal structure having preferred orientation depending on the substrate temperature. The ZnO films deposited below 400 °C had a preferred (100) orientation while those deposited above 400 °C mostly had a preferred (002) orientation. The resistivity values of ZnO films depended on the types of carrier gas. The ZnO thin films deposited under N2 atmosphere in the range of 370–410 °C showed dense surface morphologies and resistivity values of 0.6–1.1 Ω-cm, a few orders of magnitude lower than those deposited under compressed air. Hydrogen substition in ZnO possibly contributed to decreasing resistivity in ZnO thin films deposited under N2 gas. The Hall measurements showed that the behavior of ZnO films deposited at 410 °C under the N2 atmosphere was n-type with a carrier density of 8.9–9.2×1016 cm-3 and mobility of ~70 cm2/Vs. ZnO thin films showed transmission values at 550 nm wavelength in a range of 70–80%. The values of band gaps extrapolated from the transmission results showed bandgap shrinkage in an order of milli electron volts in ZnO films deposited under N2 compared to those deposited under compressed air. The calculation showed that the bandgap reduction was possibly a result of carrier–carrier interactions.  相似文献   

16.
This study investigated the mechanical and electrical properties of Ag–2Pd wire after thermal annealing. The thermal stability of the tested wire was examined by separately imposing static annealing at 275 °C, 325 °C and 375 °C in a vacuum environment. It was found that annealing the Ag–2Pd wire at 275 °C promoted the formation of a fully annealed structure with equiaxed grains. Annealing Ag–2Pd wire had a shorter heat affect zone (HAZ) length than those of conventional wire, and offered outstanding mechanical properties. A long-term electrical test found Ag3(Pd)Al and Ag2(Pd)Al compounds between the Ag–Pd ball and Al pad. These results confirmed the high-reliability properties of annealed Ag–2Pd wires for the wire bonding process.  相似文献   

17.
We report on the formation of low-resistance and highly transparent indium tin oxide (ITO) ohmic contacts to p-GaN using a Sn–Ag alloy interlayer. Although the as-deposited Sn–Ag(6 nm)/ITO(200 nm) contacts show non-ohmic behaviors, the scheme becomes ohmic with specific contact resistance of 4.72×10−4 Ω cm2 and produce transmittance of ∼91% at wavelength of 460 nm when annealed at 530 °C. Blue light-emitting diodes (LEDs) fabricated with the Sn–Ag/ITO contacts give forward-bias voltage of 3.31 V at injection current of 20 mA. LEDs with the Sn–Ag/ITO contacts show the improvement of the output power by 62% (at 20 mA) compared with LEDs with Ni/Au contacts.  相似文献   

18.
This paper reports synthesis, crystal structure and electrical properties of Cu-doped CdO (CdO:Cu) powders. X-ray diffraction shows that majority of the samples are monophase and has the cubic structure. The limit solubility of Cu ions in CdO lattice is found to be 2 mol% (after heating at 900 °C), whereby the impurity phase was determined to be the monoclinic-CuO. For monophase CdO:Cu samples synthesized at 900 °C, the lattice parameter decreased with increasing Cu concentration. Electrical conductivity of undoped CdO and 2 mol% Cu-doped CdO (after heating at 900 °C) were found to be 79 and 191 Ω?1 cm?1, respectively, at 100 °C and 912 and 1549 Ω?1 cm?1, respectively, at 900 °C. Thus, it appears that electrical conductivity slightly increases with Cu doping. Finally, the activation energy of monophase CdO:Cu (after heating at 900 °C) is shown to decrease with Cu concentration.  相似文献   

19.
《Organic Electronics》2007,8(6):690-694
Contact resistance between indium–tin oxide (ITO) electrode and pentacene was studied by transmission line method (TLM). Organic solvent cleaned, inorganic alkali cleaned, and self-assembled monolayer (with OTS: octadecyltrichlorosilane) modified ITO electrode structures were compared. Pentacene layer of 300 Å thickness was vacuum deposited on patterned ITO layer at 70 °C with a deposition rate of 0.3 Å/s. Alkali cleaned and SAM modified ITO gave a lower contact resistance of about 6.34 × 104 Ω cm2 and 1.88 × 103 Ω cm2, respectively than organic solvent cleaned ITO of about 6.58 × 105 Ω cm2. Especially with the SAM treatment, the work function of ITO increased closer to the highest occupied molecular orbital (HOMO) level of pentacene, which lowers the injection barrier between ITO and pentacene. It was also believed that pentacene morphology was improved on SAM modified ITO surface due to the lowering of the surface energy. We could obtain the low contact resistance with SAM treatment which is comparable to the measured value of gold–pentacene contact, 1.86 × 103 Ω cm2. This specific contact resistance is still much higher than that of amorphous silicon thin film transistor (0.1–30 Ω cm2).  相似文献   

20.
Transparent conducting Al-doped ZnO (ZnO:Al, AZO) thin films were prepared at substrate temperature of 270 °C by pulsed direct current magnetron sputtering. NaOH solution (5 wt%) was employed to etch the AZO films at room temperature, and the surface textured AZO films were obtained successfully. The relationship between the surface textured structures and the etching process controlled by etching time was discussed. The textured morphology of the etched AZO films became clear as increasing the etching time, and the AZO film etched for 30 min exhibited uniformly and distinctly crater-like surface textured structure. Correspondingly, the haze and the resistivity increased with the increasing etching time. And the resistivity of the AZO film etched for 30 min was 3.2×10−3 Ω cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号