首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Advanced Powder Technology》2020,31(3):1140-1147
In this paper, the preparation of rutile TiO2 powder from titanium slag by microwave-assisted activation roasting followed by hydrochloric acid leaching was investigated. The effects of the additive Na2CO3 on the crystal form, cell, crystallinity, phase transformation, surface functional groups and micro-surface structure of the calcined product were systematically studied using X-ray powder diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The results confirmed that the strongest characteristic Raman bands of rutile TiO2 and the weakest FT-IR bands of (CO3)−2 were found when the Na2CO3 mass ratio was 0.4. Accordingly, the crystallinity for the product, namely short rod structure rutile TiO2 powder, reached its peak value of 99.21% with a corresponding average grain size of 43.5 nm. The excessive Na2CO3 was found to be disadvantageous for the crystallinity of the product, since it formed a coverage on the surface of titanium slag which prevented the oxidation reaction for the decomposition of anosovite.  相似文献   

2.

SiO2@TiO2-Ag (STA) microspheres decorated with Ag nanoparticles (Ag NPs) were prepared and assembled into the photoanode. The photoanode composed of STA microspheres and TiO2 nanoparticles (P25) was prepared by doctor blade method. UV–vis measurement indicates that the introduction of a few STA microspheres observably enhances the light scattering and capturing ability of the photoanode. The photoelectric conversion efficiency of the DSSCs with 2wt% STA photoanode increased to 7.4% from 4.3% comparing with pure P25 TiO2 nanoparticles. The configuration DSSCs have the maximum short circuit current density (Jsc) of 16.0 mA cm?2 and open-circuit voltage (Voc) of 0.780 V, which are significantly higher than the pure TiO2 DSSCs. The significant improvement of the DSSCs performance can be due to the synergistic effect of the superior light scattering of STA and the localized surface plasma resonance (LSPR) effect of Ag NPs modified on the microspheres surface.

  相似文献   

3.
The surface modification of fluorine-doped tin oxide (FTO) transparent electrodes was carried out by lithography and inductively coupled plasma etching to improve the conversion efficiency of dye-sensitized solar cells (DSSCs). The concentration of Cl2 gas and dc-bias voltage to the substrate were varied as the main etch parameters. The transmittance and sheet resistance of the FTO electrodes were compared before and after etching. The DSSCs fabricated on the patterned FTO electrodes showed higher conversion efficiency than those fabricated on the ordinary FTO electrodes without patterns. Scanning electron microscopy showed that more TiO2 particles could be involved in the DSSCs with patterned FTO electrodes, and that the contact between the TiO2 layer and electrode were improved by patterning the FTO electrode. The current-voltage curves and incident photon to current efficiency spectra showed that a significantly higher photocurrent was produced in the DSSCs fabricated on the patterned FTO.  相似文献   

4.
The objective of this work was to investigate the improvement in performance of dye sensitized solar cells (DSSCs) by depositing ultra thin metal oxides (hafnium oxide (HfO2) and aluminum oxide (Al2O3)) on mesoporous TiO2 photoelectrode using atomic layer deposition (ALD) method. Different thicknesses of HfO2 and Al2O3 layers (5, 10 and 20 ALD cycles) were deposited on the mesoporous TiO2 surface prior to dye loading process used for fabrication of DSSCs. It was observed that the ALD deposition of ultrathin oxides significantly improved the performance of DSSCs and that the improvement in the DSSC performance depends on the thickness of the deposited HfO2 and Al2O3 films. Compared to a reference DSSC the incorporation of a HfO2 layer resulted in 69% improvement (from 4.2 to 7.1%) in the efficiency of the cell and incorporation of Al2O3 (20 cycles) resulted in 19% improvement (from 4.2 to 5.0%) in the efficiency of the cell. These results suggest that ultrathin metal oxide layers affect the density and the distribution of interface states at the TiO2/organic dye and TiO2/liquid electrolyte interfaces and hence can be utilized to treat these interfaces in DSSCs.  相似文献   

5.
Specialized applications of dye sensitized solar cells (DSSCs) have attracted much attention as an economical substitute to first and second generation solar cells. Surface modification of TiO2 nanoparticles with high band gap Eu2O3 coating has been carried out by chemical precipitation arrested solvothermal method. The characterizations have been done through X-ray diffraction, transmission electron microscopy, diffuse UV–visible, and photoluminescence spectroscopy. Scanning electron microscopy results reveal an increase in surface roughness in case of Eu2O3/TiO2 electrode, which leads to enhancement in the dye loading capability. The synthesized nanoparticles have been employed for the fabrication of DSSCs. Effect of Eu2O3 coating on their performance has been studied. Eu2O3/TiO2 electrode provides better surface area for the dye adsorption, which slows down the electron–hole recombination, and thus, improves the DSSC performance. The photocurrent density–voltage (J–V) characteristics reveal that the efficiency of DSSCs fabricated from Eu2O3/TiO2 nanoparticles is 52 % higher than that from bare TiO2 nanoparticles.  相似文献   

6.
A series of composite films based on LiFePO4/TiO2/Pt were synthesized and used as counter electrodes for dye sensitized solar cells (DSSCs). The composites are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET). These analysis results demonstrate that the crystal structure of LiFePO4 in composite is not changed, and the prepared LiFePO4/TiO2/Pt composite films hold a rough surface and porous structure which provide more catalytic activity sites for I3 ? reduction and more space for I?/I3 ? diffusion. The DSSC based on LiFePO4/TiO2/Pt composite CEs shows a high power conversion efficiency of 6.23% at a low Pt dosage of 2%, comparable to the conventional magnetron sputtering Pt CE (6.31%). The electrochemical analysis reveals that the presented composite CEs have good electrocatalytic activity and low charge transfer resistance. Furthermore, the DSSCs based on LiFePO4/TiO2/Pt composite CE exhibit high stability under the continuous tests condition and electrolyte soaking. The results suggest that this LiFePO4-based composite film could be a perspective electrode for practical application of DSSCs and it maybe provide a potential for further research about photo-charging lithium-ion batteries.  相似文献   

7.
The rapid manufacturing of high-efficiency dye-sensitized solar cells (DSSCs) is limited by the slow dye adsorption on TiO2 nanoparticles (NPs)-accumulated photoelectrode using conventional dip-coating process. Therefore, we aim to accelerate the adsorption of dyes that are attached on TiO2 NPs by employing an aerosol impactor. Herein the aerosolized dyes are designed to get deposited rapidly on the TiO2 NPs-accumulated photoelectrode. In addition, to effectively trap the irradiated sunlight in DSSCs, we assemble the photoelectrodes incorporated with bilayered TiO2 thin films comprising small TiO2 NPs-based underlayer and large TiO2 NPs-based overlayer as dye-supporting and light-scattering mediums, respectively. Furthermore, the effects of dye aerosol impaction and TiO2 stacking structures on the efficiency of DSSCs are examined. The power conversion efficiency (PCE) of DSSCs comprising a N719 dye-supporting layer treated with dip-coating process was determined as ~ 5.67%; however, when the bilayered TiO2 thin films with an optimized thickness ratio of light-scattering overlayer and dye-supporting underlayer were coated with N719 dyes using dye aerosol impactor, the resulting PCE increased to ~ 7.46%. This suggests that the photovoltaic characteristics of DSSCs can be enhanced considerably using the effective TiO2 NP stacking structures coated with rapid, uniform, and strong aerosol dye adsorption throughout the TiO2-based photoelectrodes.  相似文献   

8.

The rare earth elements, gadolinium and samarium, are doped with TiO2 by hydrothermal synthesis technique to study the photoconversion performance of a photoanode in a dye-sensitized solar cell (DSSC). The obtained materials are subjected to the characterizations XRD, HR-TEM, UV–Vis spectroscopy, and XPS. DSSCs are fabricated using N719 dye, redox electrolyte, and platinum counter electrode. Charge-transfer ability was investigated using electrochemical impedance spectroscopy (EIS) on DSSCs. The efficiencies of DSSCs are influenced by the electron transport within the TiO2–dye–electrolyte system. After the fabrication and simulation, among the two, Gd3+-doped TiO2 gives the desired outcomes and higher efficiency (5.542%) than the pure and Sm3+-doped TiO2 and thus it proves to be a superior solar cell anode material.

  相似文献   

9.
A unique method of flat-flame chemical vapor deposition, to synthesize nanostructured TiO2 film used for dye-sensitized solar cells (DSSCs) is reported for the first time. This method produces nanostructures of TiO2 exactly ideal for the anode of the DSSCs. Results show that cells have characteristic IV curves with fill factor typically around 70% and efficiency higher than 4%. A dendrite-like microstructure of anodes accounts for the high efficiency of the cell. The successful formation of dendrite-like microstructure provides a chance for sintering of TiO2 nanoparticles smaller than 20 nm, a possible cell efficiency enhancement by increased dye absorption due to the increased specific surface area of small particles.  相似文献   

10.
The main objective of this study is to show the effect of TiO2 nanotube length, diameter and intertubular lateral spacings on the performance of back illuminated dye sensitized solar cells (DSSCs). The present study shows that processing short TiO2 nanotubes with good lateral spacings could significantly improve the performance of back illuminated DSSCs. Vertically aligned, uniform sized diameter TiO2 nanotube arrays of different tube lengths have been fabricated on Ti plates by a controlled anodization technique at different times of 24, 36, 48 and 72?h using ethylene glycol and ammonium fluoride as an electrolyte medium. Scanning electron microscopy (SEM) showed formation of nanotube arrays spread uniformly over a large area. X-ray diffraction (XRD) of TiO2 nanotube layer revealed the presence of crystalline anatase phases. By employing the TiO2 nanotube array anodized at 24?h showing a diameter ??80?nm and length ??1·5???m as the photo-anode for back illuminated DSSCs, a full-sun conversion efficiency (??) of 3·5 % was achieved, the highest value reported for this length of nanotubes.  相似文献   

11.
TiO2 hollow spheres are employed as an additive of oligomer electrolytes for dye-sensitized solar cells (DSSCs). The measurement of steady-state currents confirms that introducing TiO2 hollow spheres can facilitate ionic diffusion in oligomer electrolytes. Even compared with conventional nanoparticle additives, the hollow spheres are more favorable to increase the diffusion coefficients of I? and I3? in oligomer electrolytes. Furthermore, the hollow structure with a submicron size is effective to scatter incident light and thereby enhance the light-harvesting efficiency of DSSCs. The energy-conversion efficiency of the DSSCs with TiO2 hollow sphere additives significantly improves up to 7.22% due to the facilitated ionic diffusion and the enhanced light-harvesting efficiency.  相似文献   

12.
Arrays of TiO2 nanotubes were fabricated by the anodization of Ti foils and then used in assembling dye-sensitized solar cells (DSSCs). The role of the morphologies of the TiO2 nanotubes in the photovoltaic performances of the DSSCs was studied in terms of the surface topography and the tube length. The necessity of removing the nanoporous films from the surface of the nanotube arrays for good DSSC performance has been demonstrated. Also, it has been shown that appropriately increasing the tube length was an effective measure for enhancing both the short-circuit current density and the conversion efficiency of the DSSCs.  相似文献   

13.
For solid-state dye-sensitized solar cells (DSSCs), a composite electrolyte of polyethylene glycol methyl ether (PEGME) and titania (TiO2) nanoparticles was prepared and characterized by Fourier transform-infra red (FT-IR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy. The heat treatment on PEGME and TiO2 composite was found to be an essential step to improve morphology, amorphicity and ionic conductivity of PEGME–TiO2 composite electrolytes. It was attributed to the increased bond strength of OC–O–Ti between PEGME and TiO2 and increased surface roughness of composite materials, which may help to absorb a large amount of iodide couple and effective generation of I3 ions. A DSSC fabricated with heat treated PEGME–TiO2 composite electrolyte showed significantly enhanced overall conversion efficiency of 3.1%, which was 20% higher than that of the DSSC fabricated with bare PEGME–TiO2 composite electrolyte.  相似文献   

14.
Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 °C for 2 h, the rutile TiO2 microspheres with a high surface area of 132 m2/g have been utilized as a light harvesting enhancement material for dye-sensitized solar cells (DSSCs). The resultant DSSCs exhibit an overall light conversion efficiency of 8.41% for TiO2 photoanodes made of rutile TiO2 microspheres and anatase TiO2 nanoparticles (mass ratio of 1:1), significantly higher than that of pure anatase TiO2 nanoparticle photoanodes of similar thickness (6.74%). Such a significant improvement in performance can be attributed to the enhanced light harvesting capability and synergetic electron transfer effect. This is because the photoanodes made of rutile TiO2 microsphere possess high refractive index which improves the light utilisation efficiency, suitable microsphere core sizes (450–800 nm) to effectively scatter visible light, high surface area for dye loading, and synergetic electron transfer effects between nanoparticulate anatase and nano-acicular rutile single crystals phases giving high electron collection efficiency.   相似文献   

15.
Vertically aligned TiO2 nanorod (NR) arrays have been grown on the fluorine doped tin oxide (FTO) substrates by hydrothermal methods and the structures were employed to fabricate the dye-sensitized solar cells (DSSCs). The charge transport properties were investigated by the current to voltage curves and the electrochemical impedance spectroscopy. It was found that DSSCs containing the as-prepared and 500 °C annealed TiO2 NRs exhibit different trends with the growth time (t). The DSSCs assembled with the un-sintered NR arrays showed the highest power conversion efficiency (η) of 1.87%. When DSSCs were assembled with the sintered NR arrays, nearly 400% enhanced efficiency were obtained, and the values (η) showed a positive correlation with t. This behavior may be attributed to the improved adhesion and electric contact between TiO2 and FTO, as well as the reduced number of recombination sites.  相似文献   

16.
This study examined the characterization of nanoporous structured titanium dioxide and its application to dye-sensitized solar cells (DSSCs). TEM revealed nanopore sizes of 10.0 nm with a regular hexagonal form. When nanoporous structured TiO2 was applied to DSSC, the energy conversion efficiency was enhanced considerably compared with that using nanometer sized TiO2 prepared using a hydrothermal method. The energy conversion efficiency of the DSSC prepared from nanoporous structured TiO2 was approximately 8.71% with the N719 dye under 100 mW cm−2 simulated light. FT-IR spectroscopy showed that the dye molecules were attached perfectly to the surface and more dye molecules were absorbed on the nanoporous structured TiO2 than on the nano-sized TiO2 particles prepared using a conventional hydrothermal method. Electrostatic force microscopy (EFM) showed that the electrons were transferred rapidly to the surface of the nanoporous structured TiO2 film.  相似文献   

17.
Titanium dioxide (TiO2) nanopowders were successfully prepared by thermal processing of the precursor of titanium hydroxide, urea and sodium acid carbonate (NaHCO3). The products were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results show that NaHCO3 has a certain effect on the average crystallite size and dispersity of TiO2 nanopowders, at the same time other phases (Na2SO4 and Na2CO3) will be introduced. However, Na2SO4 has distinctive intercalation ability and catalytic activity. TiO2 (anatase) powders can be prepared at ?600 °C for 2 h with addition of 2–10 wt% NaHCO3, and the average crystallite size is 20.0–22.3 nm. The surface of the sample mainly consists of Ti, O, C, Na and S five species elements.  相似文献   

18.
A number of glass samples were prepared from mixtures of SiO2, TiO2 and Na2CO3 (for Na2O) and their electrical characteristics were measured and interpreted in terms of an electrical energy gap somewhat smaller than the optical gaps previously reported for these glasses. Capacitance measurements showed that one effect of increasing the TiO2 content was to increase the permittivity. Traditional sodium silicate glasses conduct electricity by ions, but the admixture of TiO2 brings a significant electronic contribution. Some measurements at high electric fields were made and evidence of the applicability of small polaron theory to the results is presented.  相似文献   

19.
Dye-sensitized solar cells (DSSCs) were fabricated using TiO2 mesoporous layers obtained by very simple method—transformation of TiO2 nanotube (NT) films grown by electrochemical oxidation to nanoparticle (NP) films. This transformation is based on thermal annealing of TiO2 NT arrays formed by anodization of titanium foil in fluorine ambient. Performance of DSSCs fabricated with different size NPs was studied in the range from 35 to 350 nm. Highest nominal efficiency (9.05%) was achieved for DSSC with NP size 65 nm while the lowest nominal efficiency (1.48%) was observed for DSSCs with NP size 350 nm. The dependence of the solar cell parameters with NP size is discussed.  相似文献   

20.
TiO2 based dye-sensitized solar cells (DSSCs) have great potential to solve many energy challenges, however, their low energy conversion rate is still a barrier for further applications. Ethanol vapour post-treatment can improve the DSSC's conversion efficiency without changing its architecture, and a stable 2–3% improvement was found in our experiments. Microstructural and chemical factors were investigated using scanning electron microscopy and analytical electron microscopy on treated and untreated electrodes. The vapour treatment improved the porosity and surface-to-volume ratio of the TiO2 particles, decreased electron transport loss between TiO2 and fluorine doped tin oxide, and increased hydroxyl sites on the TiO2 particle's surface. The modification therefore enhanced the dye uptake and dye–TiO2 coupling, and it reduced the energy loss during the carrier transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号