首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Disopyramide was microencapsulated with cellulose acetate butyrate (CAB) using an emulsion-solvent evaporation process. Drug dissolution from microcapsules was studied in both simulated gastric (SGF) and intestinal fluids (SIF) under sink conditions using the USP paddle method. There was no significant difference between drug release into SIF and SGF. As the CAB to drug ratio decreased from 3:1 to 2:1 at constant polymer mass, the drug release rate increased and the T50Y0 decreased from 2.3 hr to 0.3 hr for 303 pm particles. Dissolution T50% increased from 0.4 hr to 2 hr when the mean microcapsule size was increased from 153 to 428 μm (26% drug loading). The addition of acetone to the external phase during preparation shifted the size distribution toward larger particles, but resulted in a higher drug dissolution rate for a given particle size range. A shift to smaller particles was obtained upon increasing the concentration of surfactant. The dissolution profiles were described by the Higuchi and Baker-Lonsdale equations for drug release from spherical matrices up to 90% of the drug release.  相似文献   

2.
Core-in-cup tablets containing theophylline were evaluated for their dissolution characteristics in sequenced simulated gastric fluid (SGF) followed by simulated intestinalfluid (SIF). Core-in-cup tablets containing 10% w/w, 20% w/w, and 30% w/w acacia as binder were evaluated for their effects on the time course of release of theophylline. This was done to optimize a formula that could release theophylline at a zero-order rate of release for 8-16 hr in simulated gastrointestinal fluids. Theophylline was released and dissolved from the core-in-cup tablets at a rate that is more consistent with a zero-order dissolution rate than a first-order dissolution rate in both SIG and SIF. The dissolution rates of theophylline from the 10%, 20%, and 30% acacia core-in-cup tablets were 0.87 mg/min, 0.53 mg/min, and 0.27 mg/min, respectively in SGF, and 0.61 mg/min, 0.30 mg/min, and 0.20 mg/min, respectively in SIF. The results indicate that a concentration of 32% w/w acacia in the core tablet will release theophylline at a rate of 0.14 mg/min in SGF for 2 hr followed by SIF for 10 hr.  相似文献   

3.
The interpolymeric complexation of carrageenan and chitosan was investigated for its effect on drug release from polymeric matrices in comparison to single polymers. For this purpose, matrices with carrageenan: chitosan (CG:CS) ratios of 100%, 75%, 50%, 25%, and 0% were prepared at 1:1 drug to polymer ratio. The effect of dissolution medium and drug type on drug release from the formulations was addressed. Two model drugs were utilized: diltiazem HCl (DZ) as a salt of a basic drug and diclofenac Na (DS) as a salt of an acidic drug. Three dissolution media were used: water, simulated gastric fluid (SGF), and simulated intestinal fluid (SIF). Some combinations of the two polymers showed remarkable sustained release effect on DZ in comparison to the single polymers in water and SGF. However, no apparent effect for the combination on DZ release was shown in SIF. The medium effect was explained by the necessity of chitosan ionization, which could be attained by the acidic SGF or microacidic environment created by the used acidic salt of DZ in water, but not in SIF. An interaction between the medium type and CG:CS ratio was also found. With DS, the polymer combinations had similar dissolution profiles to those of the single polymers in water and SIF, which was explained by the lack of chitosan ionization by the medium or the drug basic salt. The dissolution profiles could not be obtained in SGF, which was attributed to the conversion of DS into diclofenac free acid. The importance of chitosan ionization for its interaction with CG to have an effect on the release of DS was demonstrated by performing dissolution of SGF presoaked tablets of DS in SIF, which showed an effect of combining the two polymers on sustaining the drug release.  相似文献   

4.
The main focus of this study is to develop colon targeted drug delivery systems for metronidazole (MTZ). Tablets were prepared using various polysaccharides or indigenously developed graft copolymer of methacrylic acid with guar gum (GG) as a carrier. Various polysaccharides such as GG, xanthan gum, pectin, carrageenan, β-cyclodextrin (CD) or methacrylic acid-g-guar (MAA-g-GG) gum have been selected and evaluated. The prepared tablets were tested in vitro for their suitability as colon-specific drug delivery systems. To further improve the colon specificity, some selected tablet formulations were enteric coated with Eudragit-L 100 to give protection in an acidic environment. Drug release studies were performed in simulated gastric fluid (SGF) for 2 hr followed by simulated intestinal fluid (SIF) at pH 7.4. The dissolution data demonstrate that the rate of drug release is dependent upon the nature and concentration of polysaccharide/polymer used in the formulations. Uncoated tablets containing xanthan gum or mixture of xanthan gum with graft copolymer showed 30-40% drug release during the initial 4-5 hr, whereas for tablets containing GG with the graft copolymer, it was 70%. After enteric coating, the release was drastically reduced to 18-24%. The other polysaccharides were unable to protect drug release under similar conditions. Preparations with xanthan gum as a matrix showed the time-dependent release behavior. Further, in vitro release was performed in the dissolution media with rat caecal contents. Results indicated an enhanced release when compared to formulations studied in dissolution media without rat caecal contents, because of microbial degradation or polymer solubilization. The nature of drug transport was found to be non-Fickian in case of uncoated formulations, whereas for the coated formulations, it was found to be super-Case-II. Statistical analyses of release data indicated that MTZ release is significantly affected by the nature of the polysaccharide used and enteric coating of the tablet. Differential scanning calorimetry indicated the presence of crystalline nature of drug in the formulations.  相似文献   

5.
A new kind of two-layer floating tablet for gastric retention (TFTGR) with cisapride as a model drug was developed. The in vitro drug release was determined, and the resultant buoyancy and the time-buoyancy curve were plotted. Because of the sodium bicarbonate added to the floating layer, when immersed in simulated gastric fluid (SGF) the tablet expands and rises to the surface, where the drug is gradually released. The in vitro drug release of this kind of two-layer dosage was controlled by the amount of hydroxypropylmethylcellulose (HPMC) in the drug-loading layer. Generally, the more HPMC, the slower the drug releases. Because cisapride has greater solubility in SGF than simulated intestinal fluid (SIF), its in vitro drug dissolution in SGF is faster than in SIF. One of the distinguishing characteristics of this kind of tablet is the separate regulation of buoyancy and drug release. The idea developed in this experiment can be used as a general model for the design of other tablets for gastric retention.  相似文献   

6.
A new kind of two-layer floating tablet for gastric retention (TFTGR) with cisapride as a model drug was developed. The in vitro drug release was determined, and the resultant buoyancy and the time-buoyancy curve were plotted. Because of the sodium bicarbonate added to the floating layer, when immersed in simulated gastric fluid (SGF) the tablet expands and rises to the surface, where the drug is gradually released. The in vitro drug release of this kind of two-layer dosage was controlled by the amount of hydroxypropylmethylcellulose (HPMC) in the drug-loading layer. Generally, the more HPMC, the slower the drug releases. Because cisapride has greater solubility in SGF than simulated intestinal fluid (SIF), its in vitro drug dissolution in SGF is faster than in SIF. One of the distinguishing characteristics of this kind of tablet is the separate regulation of buoyancy and drug release. The idea developed in this experiment can be used as a general model for the design of other tablets for gastric retention.  相似文献   

7.
Precipitation of basic drugs within oral prolonged release systems, at the higher pH values of the intestine, would affect drug release. Coevaporates of a model basic drug verapamil HCl, in single or mixed polymer systems, containing Eudragit L100 (L100) and ethyl cellulose or Eudragit RS100, were prepared from ethanolic solution. XRD and DSC indicated loss of crystallinity of the drug in the coevaporates. The presence of the enterosoluble polymer in the system was found to aid in faster dissolution of the drug at higher pH values. This was affected by the presence and type of retarding polymer present in the system. Compression of the coevaporates resulted in either very slow release of the drug or undesirable changes in the release profile. Pelletization of a coevaporate containing drug and L100 yielded systems, which released the drug uniformly when studied by the buffer change method in simulated gastric (SGF) and intestinal (SIF) fluids. The presence of L100 in intimate contact with the drug was found to be essential for the desirable drug release properties of the system. The drug release occurred predominantly by diffusion in SGF and by a combination of diffusion and polymer dissolution/erosion in SIF. Appropriate choice of release modifiers and formulation variables and development of suitable formulations can yield systems which compensate for the reduced solubility of the drug in the higher pH environments of the intestine.  相似文献   

8.
ABSTRACT

The main focus of this study is to develop colon targeted drug delivery systems for metronidazole (MTZ). Tablets were prepared using various polysaccharides or indigenously developed graft copolymer of methacrylic acid with guar gum (GG) as a carrier. Various polysaccharides such as GG, xanthan gum, pectin, carrageenan, β-cyclodextrin (CD) or methacrylic acid-g-guar (MAA-g-GG) gum have been selected and evaluated. The prepared tablets were tested in vitro for their suitability as colon-specific drug delivery systems. To further improve the colon specificity, some selected tablet formulations were enteric coated with Eudragit-L 100 to give protection in an acidic environment. Drug release studies were performed in simulated gastric fluid (SGF) for 2 hr followed by simulated intestinal fluid (SIF) at pH 7.4. The dissolution data demonstrate that the rate of drug release is dependent upon the nature and concentration of polysaccharide/polymer used in the formulations. Uncoated tablets containing xanthan gum or mixture of xanthan gum with graft copolymer showed 30–40% drug release during the initial 4–5 hr, whereas for tablets containing GG with the graft copolymer, it was 70%. After enteric coating, the release was drastically reduced to 18–24%. The other polysaccharides were unable to protect drug release under similar conditions. Preparations with xanthan gum as a matrix showed the time-dependent release behavior. Further, in vitro release was performed in the dissolution media with rat caecal contents. Results indicated an enhanced release when compared to formulations studied in dissolution media without rat caecal contents, because of microbial degradation or polymer solubilization. The nature of drug transport was found to be non-Fickian in case of uncoated formulations, whereas for the coated formulations, it was found to be super-Case-II. Statistical analyses of release data indicated that MTZ release is significantly affected by the nature of the polysaccharide used and enteric coating of the tablet. Differential scanning calorimetry indicated the presence of crystalline nature of drug in the formulations.  相似文献   

9.
This study evaluated the potential of stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels as oral controlled-release drug delivery carriers. Hydrogels were synthesized by graft copolymerization of the monomers onto bacterial cellulose (BC) fibers by using a microwave irradiation technique. The hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FT-IR spectroscopy confirmed the grafting. XRD showed that the crystallinity of BC was reduced by grafting, whereas an increase in the thermal stability profile was observed in TGA. SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading. The hydrogels demonstrated a pH-responsive swelling behavior, with decreased swelling in acidic media, which increased with increase in pH of the media, reaching maximum swelling at pH 7. The release profile of the hydrogels was investigated in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The hydrogels showed lesser release in SGF than in SIF, suggesting that hydrogels may be suitable drug carriers for oral controlled release of drug delivery in the lower gastrointestinal tract.  相似文献   

10.
The mechanism of a molecular-scale entrapment of cationic drug by negatively charged latices was investigated using the measurement of zeta potential as a physical/analytical tool. It was found that as the amount of the drug was increased the zeta potential of latex particles decreased. The simultaneous presence of a dicarboxylic acid with the drug increased the zeta potential. Entrapment products were prepared using diluted latices, a cationic drug (Chlorpromazine hydrochloride), and an entrapment facilitator (succinic acid). The dissolution of the drug from the products was found to be first order in all cases. The data showed that (a) the smaller the particle size the faster the release rate, (b) the order of combination (latex to drug or vice versa) did not affect the release rate, and (c) the use of entrapment facilitator (a dicarboxylic acid), did not change the release rate but increased the amount of drug entrapped. The agreement of the first order dissolution and the first order desorption, which is assumed in Stern's electric double layer model, indicated that the entrapment occurred via surface adsorption of the drug by latex particles  相似文献   

11.
Oral drug administration is convenient with pH dependent drug delivery system since the drug has to pass through different pH environments in gastro intestinal (GI) tract. The pH dependent swelling/shrinking behavior of hydrogel drug carrier controls the drug release without affecting the function of drug. pH dependent hydrogels of poly (vinyl alcohol) (PVA) were prepared by cross linking with maleic acid (MA). The hydrogels were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, DSC, porosimetry, SEM, TEM, biocompatibility study and by measuring their swelling behavior in water, simulated gastric fluid (SGF) and intestinal fluid (SIF). Swelling of the hydrogels was found to be highest in SIF (pH: 7.5) and lowest in SGF (pH: 1.2) resembling that required in colon targeted drug delivery systems. Since the swelling behavior of the gel is pH dependent, these hydrogels were studied for colon targeted drug delivery in an in-vitro set-up resembling the condition of GI tract. The ratio of PVA and MA in the hydrogel was varied to study the effect on the drug diffusion rate. For drug delivery study, vitamin B12 and salicylic acid were used as model drugs. The hydrogel, loaded with model drugs vitamin B12 and salicylic acid also demonstrated colon specific drug release with a relatively higher drug release in SIF (pH: 7.5) than that in SGF (pH: 1.2).  相似文献   

12.
Microcapsules of terbutaline sulfate with cellulose acetate butyrate and ethylcellulose were prepared using an emulsion-solvent evaporation technique. The in vitro dissolution of terbutaline sulfate was studied using the USP rotating basket method. As the polymer to drug ratio increased, the microcapsule size distribution shifted to the smaller size and the release of terbutaline sulfate decreased. The release of terbutaline sulfate was independent of the dissolution medium pH for both polymers. The release kinetics from the microcapsules was dependent on the polymer type and polymer to drug ratio. The release of terbutaline sulfate from cellulose acetate butyrate and ethylcellulose microcapsules formulated with a 1:1 polymer to drug ratio was complex and could not be differentiated between the square-root of time and first-order release models. However, the square-root of time model was followed by microcapsules formulated with a 2:1 or a 3:1 cellulose acetate butyrate to drug ratio. When the ethylcellulose to drug ratio was increased to 2:1 the square-root of time model was followed. At an ethylcellulose to drug ratio of 3:1 the release kinetics could not be differentiated between the Hixon-Crowell and first-order release models. The T50% from ethylcellulose microcapsules was decreased when the microcapsules were compressed into tablets with the addition of AvicelR/EmcompressR (2:1) or AvicelR.  相似文献   

13.
Oral drug administration is convenient with pH dependent drug delivery system since the drug has to pass through different pH environments in gastro intestinal (GI) tract. The pH dependent swelling/shrinking behavior of hydrogel drug carrier controls the drug release without affecting the function of drug. pH dependent hydrogels of poly (vinyl alcohol) (PVA) were prepared by cross linking with maleic acid (MA). The hydrogels were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, DSC, porosimetry, SEM, TEM, biocompatibility study and by measuring their swelling behavior in water, simulated gastric fluid (SGF) and intestinal fluid (SIF). Swelling of the hydrogels was found to be highest in SIF (pH: 7.5) and lowest in SGF (pH: 1.2) resembling that required in colon targeted drug delivery systems. Since the swelling behavior of the gel is pH dependent, these hydrogels were studied for colon targeted drug delivery in an in-vitro set-up resembling the condition of GI tract. The ratio of PVA and MA in the hydrogel was varied to study the effect on the drug diffusion rate. For drug delivery study, vitamin B12 and salicylic acid were used as model drugs. The hydrogel, loaded with model drugs vitamin B12 and salicylic acid also demonstrated colon specific drug release with a relatively higher drug release in SIF (pH: 7.5) than that in SGF (pH: 1.2).  相似文献   

14.
The release of metoclopramide hydrochloride (very water soluble cationic drug) and diclofenac sodium (sparingly soluble anionic drug) from pellets coated with hydroxypropylmethylcellulose (HPMC; water-soluble polymer) or ethylcellulose aqueous dispersion (Surelease; water-insoluble polymer) at different coating loads was investigated. The release rates of either drug decreased as the coating load of HPMC increased, but overall, the release was fast, and the majority of both drugs released in about 1 hr, even at the highest coating load. The drug release mechanism for either drug was not affected by the coating load of HPMC or by the type of drug used, and it was found to be mainly diffusion controlled. Diclofenac sodium released slightly more slowly than metoclopramide hydrochloride from HPMC-coated pellets. This was attributed to the lower water solubility of the former drug. The release rate of either drug decreased greatly as the coating load of Surelease increased. The release of both drugs was sustained over 12 hr as the coating load of Surelease increased, and only about 70% of either drug was released after this period at the highest coating load (20%). The mechanism of release of metoclopramide hydrochloride was independent of coating load, and it was predominantly diffusion controlled. However, the mechanism of diclofenac sodium release was dependent on the coating load of Surelease. At low coating loads, diffusion of drug was facilitated due to the presence of more pores at the surface of the coated pellets; therefore, the rate of dissolution of the drug particles was the rate-limiting step. However, at high coating loads, drug release was mainly diffusion controlled. Despite its lower water solubility, diclofenac sodium released slightly faster than metoclopramide hydrochloride from Surelease-coated pellets at equivalent coating loads.  相似文献   

15.
The purpose of this experimental work was the development of hydrophilic–lipophilic matrix tablets for controlled release of slightly soluble drug represented here by diclofenac sodium (DS). Drug dissolution profile optimization provided by soluble filler was studied. Matrix tablets were based on cetyl alcohol as the lipophilic carrier, povidone as the gel-forming agent, and common soluble filler, that is lactose or sucrose of different particle size. Physical properties of tablets prepared by melt granulation and drug release in a phosphate buffer of pH 6.8 were evaluated. In vitro studies showed that used filler type, filler to povidone ratio and sucrose particle size influenced the drug release rate. DS dissolution profile could be changed within a wide range from about 50% per 24 hours to almost 100% in 10 hours. The release constant values confirmed that DS was released from matrices by the diffusion and anomalous transport. The influence of sucrose particle size on the drug release rate was observed. As the particle size decreased, the drug release increased significantly and its dissolution profile became more uniform. Soluble fillers participated in the pore-forming process according to their solubility and particle size. Formulations containing 100 mg of the drug, 80 mg of cetyl alcohol, 40 mg of povidone, and 80 mg of either lactose or sucrose (particle size 250–125 μm) were considered optimal for 24-hour lasting dissolution of DS.  相似文献   

16.
Abstract

Drug release from indomethacin-polyethylene glycol solid dispersions has been examined using three different size fractions. Release rates at a stirring rate of 100 rpm were generally higher from the 250-375 micron fraction than from particles in the ranges 125-188 and 500-750 microns. Release rates were highest from dispersions containing 5% indomethacin and showed a 240-fold increase at 100 rpm and a 1200-fold increase at 50 rpm over those at the same stirring rate of indomethacin alone (125-188 microns). As the percentage of indomethacin in the dispersions increased (5 to 40%) the dissolution rates decreased and for dispersions containing .15% indomethacin, complete solution of the drug was not achieved within 2 hours. The 500-750 micron fraction of the dispersion containing 10% indomethacin was significantly more gastro-toxic than particles of 125-188 microns.  相似文献   

17.
Abstract

Microcapsules of terbutaline sulfate with cellulose acetate butyrate and ethylcellulose were prepared using an emulsion-solvent evaporation technique. The in vitro dissolution of terbutaline sulfate was studied using the USP rotating basket method. As the polymer to drug ratio increased, the microcapsule size distribution shifted to the smaller size and the release of terbutaline sulfate decreased. The release of terbutaline sulfate was independent of the dissolution medium pH for both polymers. The release kinetics from the microcapsules was dependent on the polymer type and polymer to drug ratio. The release of terbutaline sulfate from cellulose acetate butyrate and ethylcellulose microcapsules formulated with a 1:1 polymer to drug ratio was complex and could not be differentiated between the square-root of time and first-order release models. However, the square-root of time model was followed by microcapsules formulated with a 2:1 or a 3:1 cellulose acetate butyrate to drug ratio. When the ethylcellulose to drug ratio was increased to 2:1 the square-root of time model was followed. At an ethylcellulose to drug ratio of 3:1 the release kinetics could not be differentiated between the Hixon-Crowell and first-order release models. The T50% from ethylcellulose microcapsules was decreased when the microcapsules were compressed into tablets with the addition of AvicelR/EmcompressR (2:1) or AvicelR.  相似文献   

18.
Production of drug composites can be used to enhance the dissolution rate of poorly-water soluble drugs. In this research, Gas Anti-Solvent (GAS) technique was applied to produce composites between theophylline (THEO) and polyethylene glycol (PEG) by using dense carbon dioxide as an anti-solvent. It was found that the size of the composites decreased as the concentration of PEG 4000 decreased. However, when increasing the temperature the degree of aggregation and particles size were increased. It was also found that a decrease in ethanol amount in the solvent mixture of dichloromethane and ethanol resulted in a decrease of particle size. The theophylline-PEG composites with the highest drug loading of 16.70% were obtained when using the mass ratio of drug and polymer at 2:3 wt.% in the dichloromethane and ethanol solvent of 50:50%v/v and 25 °C. The dissolution rate of the prepared composites in phosphate buffered solution was found to be 20.8 times greater than that of the original material.  相似文献   

19.
An oral controlled release formulation matrix for highly water-soluble drugs was designed and developed to achieve a 24-hour release profile. Using ranitidine HCl as a model drug, sodium alginate formulation matrices containing xanthan gum or zinc acetate or both were investigated. The caplets for these formulations were prepared by direct compression and the in vitro release tests were carried out in simulated intestinal fluid (SIF, pH7.5) and simulated gastric fluid (SGF, pH1.2). The release of the drug in the sodium alginate formulation containing only xanthan gum completed within 12 hours in the SIF, while the drug release in the sodium alginate formulation containing only zinc acetate finished almost within 2 hours in the same medium. Only the sodium alginate formulation containing both xanthan gum and zinc acetate achieved a 24-hour release profile, either in the SIF or in the pH change medium. In the latter case, the caplet released in the SGF for 2 hours was immediately transferred into the SIF to continue the release test. The results showed that the presence of both xanthan gum and zinc acetate in sodium alginate matrix played a key role in controlling the drug release for 24 hours. The helical structure and high viscosity of xanthan gum might prevent zinc ions from diffusing out of the ranitidine HCl-sodium alginate-xanthan gum-zinc acetate matrix so that zinc ions could react with sodium alginate to form zinc alginate precipitate with a cross-linking structure. The cross-linking structure might control a highly water-soluble drug to release for 24 hours. Evaluation of the release data showed the release mechanism for the novel formulation might be attributed to the diffusion of the drug.  相似文献   

20.
Purpose: To examine effects of polymer types on the mucoadhesive properties of polymer-coated nanostructured lipid carriers (NLCs).

Experiment: Curcumin-loaded NLCs were prepared using a warm microemulsion technique followed by coating particle surface with mucoadhesive polymers: polyethylene glycol400 (PEG400), polyvinyl alcohol (PVA), and chitosan (CS). The physicochemical properties and entrapment efficacy were examined. In vitro mucoadhesive studies were assessed by wash-off test. In addition, the stability of mucoadhesive NLCs in gastrointestinal fluids and the pattern of drug release were also investigated.

Findings: The obtained nanoparticles showed spherical shape with size ranging between 200?nm and 500?nm and zeta potential between ?37 and ?9?mV depending on the type of polymer coating. Up to 80% drug entrapment efficacy was observed. In vitro mucoadhesive studies revealed that PEG-NLCs and PVA-NLCs were adhered strongly to freshly porcine intestinal mucosa, more than 2-fold mucoadhesive compared to CS-NLCs and uncoated-NLCs. The particle size of all polymer-coated NLCs could be maintained in both simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) suggesting good physical stability in physiological fluid. In contrast, uncoated-NLCs showed particle aggregation in SGF. In vitro dissolution studies revealed a fast release characteristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号