首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
The structure evolution, sintering behavior and microwave dielectric properties of La(2−x)/3Nax(Mg1/2W1/2)O3 (x = 0–0.5) were investigated in this paper. The X-ray diffraction (XRD) results show that all samples exhibit single phase, and the structure changed from orthorhombic when 0  x < 0.3 to monoclinic phase when 0.3  x  0.5. The size and ordering degree of A/B-site domains decrease with the increase in x value. The sintering temperature of the Na-doped samples increased compared to the pure La2/3(Mg1/2W1/2)O3 (LMW) due to the estimated decrease in the concentration of A-site vacancies. The addition of Na+ ion does not affect the dielectric permittivity greatly. The Q × f value decreases with the increase in x value, although the estimated concentration of A-site vacancies decreases with increasing x, which may be ascribed to the decrease of A/B-site ordering and domain size with the increase in x. The temperature coefficient of resonant frequency changed from negative values into positive values with the increase in x value.  相似文献   

2.
The perovskite LaNixCo1−xO3 exhibits metallic conductivity with a change from p- to n-type conduction around x=0·5, thus being a candidate for electrodes or buffer layers in thin film technology. Thin films of LaNixCo1−xO3 have been grown onto polycrystalline Al2O3 substrates by Chemical Solution Deposition (CSD) of nitrate solutions in ethanol/butylacetate. The solutions were applied by dip-coating. After pyrolysis the compounds are formed in air at temperatures between 600°C and 750°C. Formation of the perovskite phase was confirmed by grazing angle X-ray diffraction. Electron micrographs revealed that the obtained films were smooth and crack-free and consisted of nanocrystalline LaNixCo1−xO3 particles. The thickness of the films was between 200 nm and 400 nm, depending on the conditions of the dipcoating procedure. Specific conductivities of the film were measured using the van der Pauw-method and were found to be around 400 S/cm for LaNiO3 and around 1 S/cm for LaCoO3 at room temperature.  相似文献   

3.
Thin films from the Lan+1NinO3n+1 system exhibit favorable dielectric and electrochemical properties that may prove useful for a variety of devices ranging from ferroelectrics to low-temperature solid oxide fuel cells. The present work covers the compositional, microstructural and electrochemical characterization of thin lanthanum nickelate films deposited by spray pyrolysis. In accordance with the phase diagram, LaNiO3?δ or La4Ni3O10?δ films were obtained during annealing of spray deposited films at temperatures between 540 °C and 1100 °C. Whereas LaNiO3?δ films exhibited a high metallic conductivity, La4Ni3O10?δ films were semiconducting. Electrochemical impedance spectroscopy indicated an increase of the area specific oxygen reduction resistance with the annealing temperature. The study highlights how the phase and microstructure of thin films from the Lan+1NinO3n+1 system can be tailored by annealing of initially amorphous films. LaNiO3?δ films have a high potential for application in electrochemical devices operating at low temperatures where high electrical conductivity is required.  相似文献   

4.
Combustive oxidation of volatile organic compounds (VOCs), such as propyl alcohol, toluene and cyclohexane, were studied. The combustion was catalyzed by nanoparticles of La1−xSrxCoO3 (x = 0, 0.2) perovskites prepared by a co-precipitation method. The results showed high activities of the perovskite catalysts. Compared to LaCoO3, in particular, La0.8Sr0.2CoO3 was much higher in catalytic ability. The total oxidation of VOCs followed the increasing order: cyclohexane < toluene < propyl alcohol. The T99% of cyclohexane was 40 °C lower than that of toluene, which appeared to be determined by the bond strengths of the weakest C–H and C–C bonds. The 100-h stability experiments showed that La1−xSrxCoO3 (x = 0, 0.2) perovskite was highly stable.  相似文献   

5.
Series of FexMn2.34−xNi0.66O4 (0 < x < 1) NTC ceramics were prepared by the Pechini method. Resistivity, thermal constant (B) and aging values were measured. It was found that the resistivity increased with increasing iron content x. The B value however first decreased with increasing x in the range of x < 0.6 and then increased with further increase in x. Aging reached a maximum in the middle range (x = 0.4–0.6) of iron content. X-ray diffraction (XRD) and infrared analysis were used to determine the distribution of Fe3+ ions. The Fe3+ ions were found to occupy both A- and B-site when x < 0.6 and then go to B-site when x > 0.6. An redistribution of the Fe3+ ions between A- and B-site was related to the aging of the NTC thermistor.  相似文献   

6.
《Ceramics International》2017,43(6):4846-4851
In this paper, La-Ni substituted barium ferrite nanoparticles were prepared by a co-precipitation method. The morphology, structure, magnetic and microwave absorption properties of samples were accomplished by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and vector network analysis. From the results evaluation, it can be seen that the magnetoplumbite structure for all of the samples have been formed and the average crystallite sizes of Ba1−xLaxFe12−xNixO19 nanoparticles within in the range of 50.9–65.5 nm. Ba0.9La0.1Fe11.9Ni0.1O19 exhibits a remarkable reflection loss of −13.5 dB at 13.05 GHz with a matching thickness of 1.5 mm. The reflection loss results indicate that Ba0.9La0.1Fe11.9Ni0.1O19 nanoparticles may be used as a potential for thin microwave absorbers.  相似文献   

7.
《Catalysis communications》2009,10(15):2509-2514
The partial oxidation of methane to synthesis gas by using the lattice oxygen of La1−xSrxMO3 (M = Mn, Ni; x = 0–0.4) and LaMnO3−αFβ (β/(3  α) = 0.1) perovskite oxides was explored. Approximately 75% CO selectivity at 16% CH4 conversion with H2/CO molar ratio of ca. 2.5 can be achieved at 800 °C. The stability of the perovskite structure and the reactivity/selectivity of lattice oxygen are found to be dependent on (i) B-site element, (ii) degree of substitution of La with Sr, and (iii) fluorination of the perovskite oxide.  相似文献   

8.
The site occupancies of rare earth ions for Ba-site to Ti-site were quantitatively estimated in (Ba1−x,Rx)(Ti1−x,Rx)O3 (R = Eu, Ho), (Ba1−3xEu2x)TiO3, and Ba(Ti1−2xEu2x)O3−x systems by applying the Rietveld refinement to the data obtained from the synchrotron radiation powder diffraction measurement. The occupational ratio of Ba-site to Ti-site for the larger rare earth ion (Eu) was 49/51 (x = 0.10), whereas for the smaller ion (Ho) was 9/91 (x = 0.01) in (Ba1−x,Rx)(Ti1−x,Rx)O3 system. Furthermore, the occupational ratio was greatly dependent on the Ba/Ti ratio, in (Ba1−3xEu2x)TiO3 system it was 92/8 (x = 0.03), whereas that in Ba(Ti1−2xEu2x)O3−x system was 20/80 (x = 0.01). The Curie point shifted to lower temperature effectively with increasing in the occupational ratio of rare earth ion into Ba-site.  相似文献   

9.
The ordering behaviour of Ba(Mg1/3Nb2/3)O3 ceramics (BMN) substituted by La3+, Na+, K+ was investigated using X-ray powder diffraction and transmission electron microscopy. The 1:2 ordered structure of BMN can be transformed to 1:1 ordered structure by substituting a small amount of La cation ion into the A-site. Moreover, the degree of ordering was increased with La content in the compound, and reached almost unity at [La] = 50 mol%. When the La ion in (Ba1−xLax)(Mg(1+x)/3Nb(2−x)/3)O3 (BLMN) was substituted by Na or K ions, the 1:1 ordered structure of BLMN was transformed into the 1:2 ordered structure. The degree of 1:2 ordering was influenced by the sintering temperature and the size difference between the A and B site ions.  相似文献   

10.
In the present paper the compounds LaSrCo0.5M0.5Oδ (M = Co, Fe, Mn, Ni) and La1.4Sr0.6Co0.5M0.5Oδ (M = Co, Ni) were prepared and characterised in order to elucidate the influence of strontium doping on A-site as well as doping with transition metals on B-site of the mixed conductor La2CoOδ. All the prepared oxides of this paper possessed the K2NiF4 structure, exhibited high electrical conductivity (>100 S/cm) and adequately low linear thermal expansion coefficient. Therefore, they are very promising materials for high temperature electrochemical applications.  相似文献   

11.
A series of transparent ceramics with the composition of La2−xLuxZr2O7 (x = 0−2.0) were prepared by solid-state reactive sintering in vacuum. With the increase of Lu content (x), phase transition from pyrochlore to defective fluorite occurred and a two-phase region existed in the range of x = 0.6−1.2. Grain sizes of the pyrochlore phase dominated samples (x < 0.5) were 11−14 μm, and that of the defective fluorite phase dominated samples were larger than 60 μm. However, grain sizes of the samples in the two-phase region were smaller than 3 μm. The La0.8Lu1.2Zr2O7 ceramic with the smallest grain size (∼2.5 μm) reached a highest in-line transmittance of 72.4% at 1100 nm among all the samples.  相似文献   

12.
The solubility of Ti4+ in the lattice of apatite-type La9.83Si6−xTixO26.75 corresponds to approximately 28% of the Si-site density. The conductivity of La9.83Si6−xTixO26.75 (x = 1–2) is predominantly oxygen-ionic and independent of the oxygen partial pressure in the p(O2) range from 10−20 to 0.3 atm. The electron transference numbers determined by the modified faradaic efficiency technique are lower than 0.006 at 900–950 °C in air. The open-circuit voltage of oxygen concentration cells with Ti-doped silicate electrolytes is close to the theoretical Nernst value both under oxygen/air and air/10%H2–90%N2 gradients at 700–950 °C, suggesting the stabilization of Ti4+ in the apatite structure. Titanium addition in La9.83Si6−xTixO26.75 (x = 1–2) leads to decreasing ionic conductivity and increasing activation energies from 93 to 137 kJ/mol, and enhanced degradation in reducing atmospheres due to SiO volatilization. At p(O2) = 10−20 atm and 1223 K, the conductivity decrease after 100 h was about 5% for x = 1 and 17% for x = 2. The solubility of Zr4+ in the La9.83Si6−xZrxO26.75 system was found to be negligible, while the maximum concentration of Ce4+ in La9.4−xCexSi6O27−δ is approximately 5% with respect to the number of lanthanum sites.  相似文献   

13.
In the BaO–La2O3–TiO2 system, the BanLa4Ti3 + nO12 + 3n homologous compounds exist on the tie line BaTiO3–La4Ti3O12 besides tungstenbronze-type like Ba6  3xR8 + 2xTi18O54 (R = rare earth) solid solutions. There are four kinds of compounds in the homologous series: n = 0, La4Ti3O12; n = 1, BaLa4Ti4O15; n = 2, Ba2La4Ti5O18; n = 4, Ba4La4Ti7O24. These compounds have the layered hexagonal perovskite-like structure, which has a common sub-structure in the crystal structure. These compounds have been investigated in our previous studies. In this study, we have investigated the phase relation and the microwave dielectric properties of BaxLa4Ti3 + xO12 + 3x ceramics in the range of x between 0.2 and 1.0. With the increase in x, the dielectric constant ɛr locates around 45, the quality factor Q × f shows over 80,000 GHz at x = 0.2 and the minimum value of 30,000 GHz at x = 0.9, and the temperature coefficients of resonant frequency τf is improved from −17 to −12 ppm/°C. At x = 0.2, the ceramic composition obtained has dielectric constant ɛr = 42, the temperature coefficient of the resonant frequency τf  = −17 ppm/°C and a high Q × f of 86,000 GHz.  相似文献   

14.
《Ceramics International》2017,43(7):5585-5591
Two series of single-phased LaxSr(2−x)Fe(1+y)Mo(1−y)O6 and LaxSr(2−x)Fe(1+0.5y)Al0.5yMo(1−y)O6 (x=3y, y=0.05, 0.1, 0.15 and 0.2) double perovskites were prepared by solid-state reaction. The effects of Al-substitution on the structures, resistivity and magnetic properties of LaxSr(2−x)Fe(1+y)Mo(1−y)O6 were investigated. Although Al-replacement exhibits a negligible influence of on the B-site ordering degree, it results in the suppression of magnetisation caused by non-magnetic Al3+ ions. Reduction of grain sizes leads to increased resistivity, thus an optimised magnetoresistance (MR) behaviour is observed. The greatest MR extent improvement can be obtained when y is 0.15 and the MR% of the Al-doped ceramics reaches −10.5% (10 K, 1 T), which is 2 times greater than that of the undoped ceramics (−4.6%, 10 K, 1 T). Interestingly, the Curie temperature (Tc) of both Al-doped and undoped samples maintained relatively constant values of approximately 420 K and 405 K, respectively, which were different results from the data obtained for similar electron-doping systems in the literature.  相似文献   

15.
Modified perovskite ceramics (La0.9Ca0.1)(Co1?xNix)O3?δ (x = 0–0.3) cathodes for solid oxide fuel cells (SOFCs) were synthesized by solid state reaction. The lattice parameters, electrical conductivity, activation energy, and microstructures of these specimens were investigated systematically in this study. The results exhibited that all specimens are rhombohedron structures and their tolerance factors were greater than 0.97, indicating that the perovskite was not distorted by Ni2+ cation substitution for the B site of (La0.9Ca0.1)CoO3?δ. The microstructures of the (La0.9Ca0.1)(Co1?xNix)O3?δ specimens showed good densification, and were well-sintered, with few pores. The electrical conductivity behavior conformed to the nature of a semiconductor, for all specimens. As x = 0.1, the electrical conductivity reached the maximum value of 750.3 S/cm at 800 °C, and the activation energy calculated from the Arrhenius plot of the electrical conductivity versus the reciprocal of temperature is 7.1 kJ/mol.The novelty of this study is its introduction of the concept of defect chemistry to explain the relationship between compensation mechanisms and electrical conductivity. The information gleaned regarding charge compensation mechanisms and defect formation may be valuable for a better understanding of the cathode of (La0.9Ca0.1)(Co1?xNix)O3?δ ceramics used for SOFCs. Moreover, the information about oxygen content versus temperature is useful for expressing the relationship between electrical conductivity and composition. Therefore, we also used thermogravimetric analysis combined with the room-temperature oxygen content which was determined by iodometric titration to investigate the oxygen content from room temperature to high temperature, in air. Based on the experimental results, the (La0.9Ca0.1)(Co0.9Ni0.1)O3?δ specimen shows high electrical conductivity. Consequently, it is identified as a promising candidate for cathode SOFC applications.  相似文献   

16.
Magnetic properties of two spinel oxides solid solutions, Cu1+xMn2−xO4 and Ni1+xMn2−xO4, are reported. These series are characterized by two magnetic transitions: the upper one, of ferrimagnetic type, occurs at about 85 K (for copper-based) and at 105–110 K (for nickel-based spinels), independently of the x-content; the lower transition may be related to a Néel-type collinear ordering and takes place at 30 and 45 K, respectively. Application of moderate fields (H > 250 Oe) make both transitions to merge into one broad maximum in the magnetization, which takes place at lower temperature when applying larger fields. Magnetization cycles with temperature (ZFC/FC) or field (loops) allowed us to well characterize the ordered state. The effective moment follows the expected behavior when manganese ions are being substituted by ions of lower magnetic moment (Ni2+ and Cu2+).  相似文献   

17.
K and Mg substituted perovskite catalysts La1  xKxCo1  yMgyO3 (x = 0–0.4, y = 0–0.2) for soot combustion were prepared by citric acid complexation and characterized by XRD, FT-IR, SEM, TEM, EDS, H2-TPR, XPS and TG. Soot combustion was remarkably accelerated when K was introduced into LaCoO3. Then Mg was doped into the K substituted LaCoO3, soot combustion was further improved for the restrained growth of Co3O4 phase. K/Mg substitutions were responsible for enhancing activity of catalysts by improving reducibility as suggested by H2-TPR studies. Among all the catalysts, La0.6K0.4Co0.9Mg0.1O3 exhibited the highest activity.  相似文献   

18.
Perovskites LaNiO3, LaNi1−xMgxO3−δ and LaNi1−xCoxO3−δ were synthesized by auto combustion method. TPR analysis reveled that Mg or Co substituted perovskites were more difficult to reduce. The perovskites were evaluated as catalyst precursors in the dry reforming of methane. Catalysts obtained by reduction of LaNiO3 and LaNi1−xMgxO3−δ perovskite had the highest catalytic activity for CO2 reforming of CH4 at 700 °C using drastic reaction conditions (10 mg of catalyst, a mixture of CH4/CO2 without dilution gas). Methane and carbon dioxide conversions were 57% and 67%, respectively, with a H2/CO ratio equal to 0.47.The presence of cobalt leads to a decrease of the catalytic activity. This decreasing of activity may be attributed to the Co–Ni alloy formation. Computational calculations revealed that Ni atom cleaves the C–H atom while Co is not able to activate the CH4 molecule. The interaction energy of CH4 with the Ni and CO atom was 18 kcal/mol and 0.7 kcal/mol, respectively.The catalysts were characterized by TPR, TEM and in situ XRD.  相似文献   

19.
Perovskites La1−xCaxAlyFe1−yO3−δ (x, y = 0 to 1) were prepared by high-temperature solid-state synthesis based on mixtures of oxides produced by colloidal milling. The XRD analysis showed that perovskites La0.5Ca0.5AlyFe1−yO3−δ with a high Fe content (1  y = 0.8–1.0) were of orthorhombic structure, perovskites with a medium Fe content (1  y = 0.8–0.5) were of rhombohedral structure, and perovskite with the lowest Fe content (1  y = 0.2) were of cubic structure. Thermally programmed desorption (TPD) of oxygen revealed that chemical desorption of oxygen in the temperature range from 200 to 1000 °C had proceeded in the two desorption peaks. The low-temperature α-peak (in the 200–550 °C temperature range) was brought about by oxygen liberated from oxygen vacancies; the high-temperature β-peak (in the 550–1000 °C temperature range) corresponded to the reduction of Fe4+ to Fe3+. The chemidesorption oxygen capacity increased with increasing Ca content and decreased with increasing Al content in the perovskites. The Al3+ ions restricted, probably for kinetic reasons, the reduction of Fe4+ and the high-temperature oxygen desorption associated with it.  相似文献   

20.
We have prepared polycrystalline Mn1.4Ni1.2Co0.4−xMgxO4 (0  x  0.25) samples using a solid-state reaction process and investigated the MgO doping effect on the microstructure and the electrical properties. It was found that, as the amount of Mg content in the Mn1.4Ni1.2Co0.4−xMgxO4 samples increased, both the grain size and density decreased. The as-sintered Mn1.4Ni1.2Co0.4−xMgxO4 samples contained Mn- and Ni-rich phases with cubic spinel structure. The MgO-doped Mn1.4Ni1.2Co0.4−xMgxO4 negative temperature coefficient (NTC) thermistors provided various electrical properties, depending on Mg content. The electrical resistivity, B25/85 constant, and activation energy of the Mn1.4Ni1.2Co0.4−xMgxO4 NTC thermistors increased with increasing Mg content. The values of ρ25, B25/85 constant, and activation energy of the NTC thermistors were 11,185–20,016 Ω cm, 3635–4032 K, and 0.313–0.348 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号