首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe3O4) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55 °C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy.  相似文献   

2.
Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g? 1 and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials.  相似文献   

3.
Monodisperse Fe3O4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe3O4@silica@Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10? 9 mol·cm? 2, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s? 1. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM? 1 cm? 2 and fast response (less than 5 s).  相似文献   

4.
X-band electron paramagnetic resonance (EPR) studies of Cr3+ doped lithium potassium sulphate single crystals have been done at room temperature. The Cr3+ crystal field and spin Hamiltonian parameters have been evaluated by employing resonance line positions observed in the EPR spectra for different orientations of external magnetic field. The evaluated g, D and E values are: gx = 2.0763 ± 0.0002, gy = 1.9878 ± 0.0002, gz = 1.8685 ± 0.0002 and D = 549 ± 2 × 10?4 cm?1, E = 183 ± 2 × 10?4 cm?1. Using EPR data the site symmetry of Cr3+ ion in the crystal is discussed. Cr3+ ion enters the lattice substitutionally replacing K+ site. The optical absorption study of the single crystal is also done in 195–925 nm wavelength range at room temperature. By correlating optical and EPR data the nature of bonding in the crystal is discussed. The calculated values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are obtained as: B = 697, C = 3247, Dq = 2050 cm?1, h = 1.146 and k = 0.21.  相似文献   

5.
Co coated Fe3O4 core/shell-type nanoparticles were fabricated by hydrothermal technique and electroless plating process. X-ray powder diffraction (XRD), X-ray fluorescence spectrometer (XRF) and transmission electron microscope (TEM) were employed to investigate the crystal structure, element composition and morphology of the prepared nanoparticles. Vibrating sample magnetometer (VSM) and vector network analyzer were used to measure the magnetic properties and electromagnetic parameters of pure Fe3O4 and Fe3O4/Co core/shell-type nanoparticles, then reflection losses (RL(dB)) were calculated in the frequency range of 2–18 GHz. Magnetic studies revealed typical ferromagnetic behavior for the pure Fe3O4 and Fe3O4/Co core/shell-type nanoparticles with their saturation magnetization (Ms = 63.1 and 72.4 emu/g) and coercivity (Hc = 99.5, and 165.4 Oe), respectively. Due to the existence of the core/shell structure, the electromagnetic characteristic of the Fe3O4/Co nanoparticles exhibit better microwave absorption performance than the pure Fe3O4 in the range of 2–18 GHz, such as more powerful absorbing property and wider frequency band of microwave absorption.  相似文献   

6.
Magnetic microspheres were prepared using a single step coaxial electrohydrodynamic atomization technique at ambient temperature and pressure, with poly(lactic-co-glycolic acid) as the coating and iron oxide (Fe3O4) nanoparticles dispersed in polyethylene glycol as the encapsulated material. The morphology and particle size distributions of the prepared magnetic microspheres were investigated by scanning electron microscopy. The particles were spherical with mean diameters ranging from ~ 2 μm to 18 μm, depending on the combination of processing parameters (flow rate and applied voltage). Analysis by infrared spectroscopy and focused ion-beam sectioning confirmed incorporation of iron oxide nanoparticles into the microspheres and the prepared samples were shown to be responsive to an applied magnetic field. This study demonstrates a convenient method for the preparation of nanoparticle loaded microspheres, which could be used potentially as transverse relaxation contrast agents in magnetic resonance imaging, as well as for magnetically guided drug delivery.  相似文献   

7.
Fine particles of zinc ferrite (ZnFe2O4) and calcium sodium phosphate [NaCaPO4] were crystallized in bulk x(ZnO, Fe2O3)(65?x)SiO220(CaO, P2O5)15Na2O (6  x  21 mol %) glassy matrix by heat treatment. Initial magnetization curves reveal that samples with x = 6 and 9 mol % zinc–iron oxide exhibit both ferrimagnetic and paramagnetic contributions, whereas, samples with x > 9 mol % zinc–iron oxide exhibit only ferrimagnetic contribution. This observation is supported by the disappearance of the electron paramagnetic resonance (EPR) absorption line centered at g  4.3 in samples with x > 9 mol % zinc–iron oxide. Apatite-forming ability of the glass-ceramic samples was investigated by examining apatite formation on the surface of the samples treated in simulated body fluid (SBF). Increase in apatite-forming ability was observed with an increase in zinc–iron oxide content. The results obtained have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass-ceramic composition. A good correlation has also been observed between the magnetic nature of the samples and their apatite-forming ability. These materials are expected to find application as thermo-seeds in hyperthermia treatment of bone cancer.  相似文献   

8.
Layered LiNi0.2Mn0.2Co0.6O2 phase, belonging to a solid solution between LiNi1/2Mn1/2O2 and LiCoO2 most commercialized cathodes, was prepared via the combustion method at 900 °C for a short time (1 h). Structural and magnetic properties of this material during chemical extraction were investigated. The powders adopted the α-NaFeO2 structure with almost none of the well-known Li/Ni cation disorder. The analysis of the magnetic properties in the paramagnetic domain agrees with the combination of Ni2+ (S = 1), Co3+ (S = 0) and Mn4+ (S = 3/2) spin-only values. X-ray analysis of the chemically delithiated LiyNi0.2Mn0.2Co0.6O2 reveals no structural transition. The process of lithium extraction from and insertion into LiNi0.2Mn0.2Co0.6O2 was discussed on the basis of ex situ EPR experiments and magnetic susceptibility. Oxidation of Ni2+ (S = 1) to Ni3+ (S = 1/2) and to Ni4+ (S = 0) was observed upon lithium removal.  相似文献   

9.
Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe3O4), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.  相似文献   

10.
Superparamagnetic Fe3O4/Au nanoparticles were synthesized and surface modified with mercaptopropionic acid (MPA), followed by conjugating Nα,Nα-Bis(carboxymethyl)-l-lysine hydrate (ANTA) and subsequently chelating Co2 +. The resulting Fe3O4/Au–ANTA–Co2 + nanoparticles have an average size of 210 nm in aqueous solution, and a magnetization of 36 emu/g, endowing the magnetic nanoparticles with excellent magnetic responsivity and dispersity. The Co2 + ions in the magnetic nanoparticle shell provide docking site for histidine, and the Fe3O4/Au–ANTA–Co2 + nanoparticles exhibit excellent performance in binding of a His-tagged protein with a binding capacity of 74 μg/mg. The magnetic nanoparticles show highly selective purification of the His-tagged protein from Escherichia coli lysate. Therefore, the obtained Fe3O4/Au–ANTA–Co2 + nanoparticles exhibited excellent performance in the direct separation of His-tagged protein from cell lysate.  相似文献   

11.
《Materials Research Bulletin》2013,48(11):4693-4698
A facile one-pot method has been developed to prepare poly(amino acid) functionalized, water-stable, biocompatible, and superparamagnetic iron oxide nanoparticles (NPs) with small diameters of ∼10 nm. The obtained biocompatible magnetic nanoparticles capped with polyaspartic acid (PASP) exhibit a relatively high saturation magnetization (57.1 emu/g) and a much strong magnetic resonance (MR) T2 relaxation effect with the transverse relaxivity coefficient (r2) as high as 302.6 s−1 mM−1. Interestingly, the as-prepared Fe3O4@PASP NPs are highly stable in aqueous solution and demonstrate the property of magnetic nanofluids. The high T2 effect, good water-stability, superparamagnetization, biocompatibility and bioconjugatability render the as-synthesized Fe3O4@PASP NPs great desirable for bioapplications such as magnetic resonance imaging (MRI), bioseparation, targeted drug delivery, and so on.  相似文献   

12.
《Materials Letters》2007,61(19-20):4043-4045
The urea-based hydrothermal (UBH) method can synthesize indium tin oxide (ITO) nanopowders with good monodispersity and size uniformity. However, the resulting formation of high pressure CO2 gas by the hydrolysis of urea during the hydrothermal process is unsafe. The pressure generated by the UBH method can be lowered by connecting the hydrothermal reactor to a vessel containing sodium hydroxide solution to quickly absorb CO2 gas. ITO nanoparticles with particle sizes of 90 ± 3 nm and 40 ± 3 nm can be produced. The size of the as-prepared nanoparticles is readily controlled by adjusting the precursor concentration. Using properly mixed nanoparticles with a volume ratio of V40 nm:V90 nm = 30:70 as the raw materials, ITO can be sintered to a high and consistent density of 99.3–99.5% of the theoretical density.  相似文献   

13.
Several micro meter long nanowires of ε-FexN (2 < x < 3) are synthesized through a reduction nitridation method of Fe-NTA precursor formed by a hydrothermal method. The formation of pure iron nitride nanowires is confirmed by XRD. SEM analysis shows the porous nature of the iron nitride nanowires, which will enhance its suitability in catalysis. The field dependent magnetic behavior shows the ferromagnetic nature of the iron nitride nanowires. An appreciably good magnetization value (71 emu/g) and low coercivity (24 Oe) of the system makes it suitable for magnetic recording head applications. The room temperature Mössbauer study of the pristine nitride nanowires shows the existence of two iron sites corresponding to Fe (II) and Fe (III) indicating structural disorder.  相似文献   

14.
The objective of this study was to investigate the effect of processing methods on the formation of ultra fine hydroxyapatite (HAp) nanoparticles in the presence of citrate ions and analyze their various physical properties. The addition of the citrate ions was found to reduce the size and prevent the agglomeration of HAp particles dramatically in the high gravity (HG) method compared to precipitation method. In precipitation method, the particle size reduced from 300 ± 70 nm to 90 ± 20 nm with the addition of citrate ions. In high gravity method, the particle size decreased more significantly from 80 ± 10 nm to 13 ± 5 nm with the addition of citrate ions. Furthermore, more uniform size distribution of nanoparticles was achieved in high gravity method. X-ray diffraction of nanoparticles prepared in both method exhibited slight shift of peaks to the higher angle with the addition of citric acid, indicating the incorporation of carbonate (CO3) content in the HAp nanoparticles irrespective of the particle size. The mechanical properties of HWMPE matrix composite reinforced with nanoparticles was examined and this nanocomposite with nanoparticles prepared in high gravity method with the addition of citrate ions showed increased mechanical strength due to the considerable reduction in the particle size and higher uniformity of the particles. In vitro cellular analyses of the nanoparticle prepared in high gravity with the addition of citrate ions also displayed the most pronounced spreading of cell growth.  相似文献   

15.
A simple method was introduced to prepare magnetic chitosan nanoparticles by co-precipitation via epichlorohydrin cross-linking reaction. The average size of magnetic chitosan nanoparticles is estimated at ca. 30 nm. It was found that the adsorption of Cr(VI) was highly pH-dependent and its kinetics follows the pseudo-second-order model. Maximum adsorption capacity (at pH 3, room temperature) was calculated as 55.80 mg·g? 1, according to Langmuir isotherm model. The nanoparticles were thoroughly characterized before and after Cr(VI) adsorption. From this result, it can be suggested that magnetic chitosan nanoparticles could serve as a promising adsorbent for Cr(VI) in wastewater treatment technology.  相似文献   

16.
Co1?xNix alloy nanoparticles (x = 0.2, 0.5, 0.6, and 0.8) with the diameter 15–28 nm attached on the surface of multi-walled carbon nanotubes (MWCNTs) were prepared to form Co1?xNix/MWCNT nanocomposites by microwave irradiation. Experimental results demonstrated that Co1?xNix alloy nanoparticles with quasi-spherical and face-centered cubic structure had been attached on the MWCNTs, the composition and size of Co1?xNix alloy nanoparticles could be controlled through adjusting the atomic ratios of metal Co to Ni in the mixed acetate solution, the microwave power and microwave irradiation time, respectively. Both the coercivity and the saturation magnetization of Co1?xNix alloy nanoparticles increased with increasing Co concentration from x = 0.8 to 0.5, and decreased when Co concentration was increased from x = 0.5 to 0.2. These confirm that microwave synthesis is promising for fabricating alloy nanoparticles attached on MWCNTs for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

17.
《Advanced Powder Technology》2014,25(6):1721-1727
In this paper, delafossite-type Na0.5Li0.5CoO2 nanoparticles (NPs) with an average particle size of 50 nm were successfully synthesized by sol–gel method. Prepared NPs were characterized by differential thermal analysis, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and scanning tunneling microscopy. The nanoparticles showed the excellent adsorption properties towards methylene blue dye (MBD) as a reactive dye. The kinetics of removal of MBD in aqueous solutions was studied in a series of experiments which were varied in the amount of NPs, contact time, pH, and temperature. The experimental data were fitted very well in the pseudo-second order kinetic model and the Freundlich adsorption isotherm model. 92% of dye was successfully removed in 10 min using 0.02 g Na0.5Li0.5CoO2 NPs in a pH = 11. Thermodynamic study indicates that the adsorption of MBD is feasible, and spontaneous in nature.  相似文献   

18.
Titania (TiO2) nanoparticles were produced from natural rutile sand using different approaches such as sol–gel, sonication and spray pyrolysis. The inexpensive titanium sulphate precursor was extracted from rutile sand by employing simple chemical method and used for the production of TiO2 nanoparticles. Particle size, crystalline structure, surface area, morphology and band gap of the produced nanoparticles are discussed and compared with the different production methods such as sol–gel, sonication and spray pyrolysis. Mean size distribution (d50) of obtained particles is 76 ± 3, 68 ± 3 and 38 ± 3 nm, respectively, for sol–gel, sonication and spray pyrolysis techniques. The band gap (3.168 < 3.215 < 3.240 eV) and surface area (36 < 60 < 103 m2 g?1) of particles are increased with decreasing particle size (76 > 68 > 38 nm), when the process methodology is changed from sol–gel to sonication and sonication to the spray pyrolysis. Among the three methods, spray pyrolysis yields high-surface particles with active semiconductor bandgap energy. The effects of concentration of the precursor, pressure and working temperature are less significant for large-scale production of TiO2 nanoparticles from natural minerals.  相似文献   

19.
Magnetic γ-Fe2O3 nanoparticles were successfully deposited on the surface of the bamboo via a coprecipitation process at room temperature. Spherical-like magnetic γ-Fe2O3 nanoparticles with a diameter of about 17 nm displayed well superparamagnetic behavior and were chemically bonded to the bamboo surface through the combination of hydrogen groups. With further modification by 1H,1H,2H,2H-perfluorodecyltri ethoxysilane (FAS-17), magnetic γ-Fe2O3/bamboo composites (MBCs) expressed superhydrophobic performances to not only water but also common liquids like coffee, milk, ink, tea, and coke. When immersed into the corrosive solutions including strong acid (pH = 1), heavy alkaline (pH = 14), and salt with high concentration (5 M) for 24 h, superhydrophobic magnetic γ-Fe2O3/bamboo composites (SMBC) still remained magnetism as well as superhydrophobicity. Also, under harsh conditions like boiled at 100 °C for 4 h, frozen at − 40 °C for 24 h, SMBCs were kept a robust magnetism and superhydrophobicity. Additionally, SMBC was a typical ferromagnet and exhibited some microwave absorbabilities.  相似文献   

20.
In this paper, gelcasting and pressureless sintering of YAG gel coated ZrB2–SiC (YZS) composite were conducted. YAG gel coated ZrB2–SiC (YZS) suspension was firstly prepared through sol–gel route. Poly (acrylic acid) was used as dispersant. YZS suspension had the lowest viscosity when using 0.6 wt.% PAA as dispersant. Gelcasting was conducted based on AM–MBAM system. The gelcast YZS sample was then pressureless sintered to about 97% density. During sintering, YAG promoted the densification process from solid state sintering to liquid phase sintering. The average grain sizes of ZrB2 and SiC in the YZS composite were 3.8 and 1.3 μm, respectively. The flexural strength, fracture toughness and microhardness were 375 ± 37 MPa, 4.13 ± 0.45 MPa m1/2 and 14.1 ± 0.5 GPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号