首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A new concept of silicon bipolar transistor technology is proposed. The resulting horizontal current bipolar transistor (HCBT) is simulated assuming the 0.25 μm technology. The surface of the device is smaller than conventional super-self aligned bipolar transistors. The same doping profile as in known vertical current devices is achieved by simpler technology using single polysilicon layer, without conventional epitaxial and n+ buried layers and with reduced number of lithography masks and technological steps. The simulated dc and ac characteristics of HCBT are similar to the characteristics of standard SST devices  相似文献   

2.
A new semi-static complementary gain cell for future low power DRAM's has been proposed and experimentally demonstrated. This gain cell consists of a write-transistor and its opposite conduction type read-transistor with a heating gate as a storage node which causes a shift in the threshold voltage. This gain cell provides a two orders of magnitude larger cell signal output and higher immunity to noise on the bitlines when compared with a conventional one-transistor DRAM cell without increasing the storage capacitance even at a supply voltage of 0.8 V. The 0.87 μm2 cell size is achieved by using a 0.25 μm design rule with a polysilicon thin-film transistor built in the trench and phase shifted i-line lithography  相似文献   

3.
TEM analyses show metal migration into the polysilicon emitter of a bipolar transistor after high current stress. At the edges of the polysilicon emitter where the current density was expected to be the highest, a metal filament was seen penetrating into the edge of the polysilicon emitter after stressing at a current density of 16.3 mA/μm2 for 1.68×105 s at 90°C. The metal penetration into polysilicon offers a possible cause for an electrical measurement reported by D.D. Tang et al. (1990), in which a slight lowering of the emitter contact resistance occurs after the same stress  相似文献   

4.
A self-aligned stacked-capacitor cell called the CROWN cell (a crown-shaped stacked-capacitor cell), used for experimental 64-Mb-DRAMs operated at 1.5 V, has been developed using 0.3-μm electron-beam lithography. This memory cell has an area of 1.28 μm2. The word-line pitch and sense-amplifier pitch of this cell are 0.8 and 1.6 μm, respectively. In spite of this small cell area, the CROWN cell has a large capacitor surface area of 3.7 μm2 because (1) it has a crown-shaped capacitor electrode, (2) its capacitor is on the data line, and (3) it has a self-aligned memory cell fabrication process and structure. The large capacitor area and a Ta2O5 film equivalent to a 2.8-nm SiO2 film ensure a large storage charge of 33 fC (storage capacitance equals 44 fF) for 1.5-V operation. A small CROWN cell array and a memory test circuit were successfully used to achieve a basic DRAM cell operation  相似文献   

5.
The frequency performance of AlGaAs/GaAs heterojunction bipolar transistors (HBTs) having different layouts, doping profiles, and layer thicknesses was assessed using the BIPOLE computer program. The optimized design of HBTs was studied, and the high current performances of HBTs and polysilicon emitter transistors were compared. It is shown that no current crowding effect occurs at current densities less than 1×105 A/cm2 for the HBT with emitter stripe width SE<3 μm, and the HBT current-handling capability determined by the peak current-gain cutoff frequency is more than twice as large as that of the polysilicon emitter transistor. An optimized maximum oscillation frequency formula has been obtained for a typical process n-p-n AlGaAs/GaAs HBT having base doping of 1×10 19 cm-3  相似文献   

6.
A high-performance 0.5-μm BiCMOS technology has been developed. Three layers of polysilicon are used to achieve a compact four-transistor SRAM bit cell size of less than 20 μm2 by creating self-aligned bit-sense and Vss contacts. A WSix polycide emitter n-p-n transistor with an emitter area of 0.8×2.4 μm2 provides a peak cutoff frequency (fT) of 14 GHz with a collector-emitter breakdown voltage (BVCFO) of 6.5 V. A selectively ion-implanted collector (SIC) is used to compensate the base channeling tail in order to increase fT and knee current without significantly affecting collector-substrate capacitance. ECL gate delays as fast as 105 ps can be obtained with this process  相似文献   

7.
High-speed BiCMOS technology with a buried twin well structure   总被引:3,自引:0,他引:3  
A buried twin well and polysilicon emitter structure is developed for high-speed BiCMOS VLSI's. A bipolar transistor of high cutoff frequency (fT= 4 GHz) and small size (500 µm2) has been fabricated on the same chip with a standard 2-µm CMOS, without degrading the device characteristics of the MOSFET. Latchup immunity is improved due to the low well resistance of the buried layer. The well triggering current is a 0.5-1.0 order of magnitude higher than that of a standard n-well CMOS. To evaluate the utility of this technology, a 15-stage ring oscillator of the 2NAND BiCMOS gate is fabricated. The gate has a 0.71-ns propagation delay time and 0.25-mW power dissipation at 0.85-pF loading capacitance and 4-MHz operation. Drive ability is 0.24 ns/pF, which is 2.5 times larger than that of the equal-area CMOS gate.  相似文献   

8.
Exponential curvature-compensated BiCMOS bandgap references   总被引:5,自引:0,他引:5  
An exponential curvature compensation technique for bandgap references (BGR's) which exploits the temperature characteristics of the current gain β of a bipolar transistor is described. This technique requires no additional circuits for the curvature compensation; only a size adjustment of a bias transistor in a conventional first-order compensated BGR is required. Positive and negative versions of the exponential curvature-compensated BGR have been fabricated using a 1.5 μm BiCMOS process. Average temperature coefficients (TC's) of the negative BGR are measured as 2.4 and 6.7 ppm/°C, and those of the positive BGR are measured as 3.5 and 8.9 ppm/°C over the commercial (0~70°C) and military (-55~125°C) temperature ranges, respectively. These circuits dissipate 0.37 mW with a single 5 V supply, and occupy 270×150 μm2 and 290×150 μm2 , respectively  相似文献   

9.
An experimental bipolar transistor structure with self-aligned base-emitter contacts formed using one polysilicon layer is presented with geometries and frequency performance comparable to those of double-polysilicon structures. This structure, called STRIPE (self-aligned trench-isolated polysilicon electrodes), provides a 0.2-μm emitter-base polysilicon contact separation. A 0.4-μm emitter width is achieved with conventional 0.8-μm optical lithography. Scaling of the emitter width of 0.3 μm has been performed with minimal degradation of device performance, and scaling of the emitter width pattern to 0.2 μm has been demonstrated. These dimensions are the smallest achieved in single-polysilicon structures with polysilicon base contacts and are comparable to those achieved in double-polysilicon structures. The STRIPE structure has been used to fabricate transistors with ft as high as 33.8 GHz  相似文献   

10.
A polysilicon emitter RCA transistor (an ultra-thin interfacial oxide layer exists between polysilicon and silicon emitter) is presented which can operate at 77 K for the first time. An ultra-thin (1.5 nm) interfacial oxide layer is grown deliberately between polysilicon and silicon emitter using RCA oxidation and excellent device stability is obtained after rapid thermal annealing (RTA) treatment in nitrogen atmosphere. The RCA transistor exhibits good electrical performance at very low temperature for an emitter area of 3 × 8 μm2. The maximum toggle frequency of a 1:2 static divider is 1.2 GHz and 732 MHz at 300 K and 77 K, respectively  相似文献   

11.
This paper describes a novel fully planar AlGaAs/GaAs heterojunction bipolar transistor (HBT) technology using selective chemical beam epitaxy (CBE). Planarization is achieved by a selective regrowth of the base and collector contact layers. This process allows the simultaneous metallization of the emitter, base and collector on top of the device. For the devices with an emitter-base junction area of 2×6 μm2 and a base-collector junction area of 14×6 μm2, a current gain cut off frequency of 50 GHz and a maximum oscillation frequency of 30 GHz are achieved. The common emitter current gain hFE is 25 for a collector current density Jc of 2×104 A/cm2  相似文献   

12.
A memory array architecture and row decoding scheme for a 3 V only DINOR (divided bit line NOR) flash memory has been designed. A new sector organization realizes one word line driver per two word lines, which is conformable to tight word line pitch. A hierarchical negative voltage switching row decoder and a compact source line driver have been developed for 1 K byte sector erase without increasing the chip size. A bit-by-bit programming control and a low threshold voltage detection circuit provide a high speed random access time at low Vcc and a narrow program threshold voltage distribution. A 4 Mb DINOR flash memory test device was fabricated from 0.5 μm, double-layer metal, triple polysilicon, triple well CMOS process. The cell measures 1.8×1.6 μm2 and the chip measures 5.8×5.0 mm 2. The divided bit line structure realizes a small NOR type memory cell  相似文献   

13.
An advanced TFT memory cell technology has been developed for making high-density and high-speed SRAM cells. The cell is fabricated using a phase-shift lithography that enables patterns with spaces of less than 0.25 μm to be made using the conventional stepper. Cell area is also reduced by using a small cell-ratio and a parallel layout for the transistor. Despite the small cell-ratio, stable operation is assured by using advanced polysilicon PMOS TFT's for load devices. The effect of the Si3N4 multilayer gate insulator on the on-current and the influence of the channel implantation are also investigated. To obtain stable operation and extremely low stand-by power dissipation, a self-aligned offset structure for the polysilicon PMOS TFT is proposed and demonstrated. A leakage current of only 2 fA/cell and an on-/off-current ratio of 4.6×106 are achieved with this polysilicon PMOS TFT in a memory cell, which is demonstrated in a experimental 1-Mbit CMOS SRAM chip that has an access time of only 7 ns  相似文献   

14.
A record 210-GHz fT SiGe heterojunction bipolar transistor at a collector current density of 6-9 mA/μm2 is fabricated with a new nonself-aligned (NSA) structure based on 0.18 μm technology. This NSA structure has a low-complexity emitter and extrinsic base process which reduces overall thermal cycle and minimizes transient enhanced diffusion. A low-power performance has been achieved which requires only 1 mA collector current to reach 200-GHz fT. The performance is a result of narrow base width and reduced parasitics in the device. Detailed comparison is made to a 120-GHz self-aligned production device  相似文献   

15.
Furukawa  A. Mizuta  M. 《Electronics letters》1988,24(22):1378-1380
A heterojunction bipolar transistor (HBT) has been fabricated using the AlGaSb/GaSb material system for the first time. The HBT structure of 100×100 μm2 emitter size was made by mesa-etching the molecular-beam-epitaxially grown layers. The device exhibits a current gain as high as 160 at room temperature  相似文献   

16.
Self-aligned AlGaAs/GAs heterojunction bipolar transistors with peak specific transconductances as high as 25 mS/μm2 of emitter area are discussed. These are the highest specific transconductances ever reported for a bipolar transistor. These devices, which contain no indium in the emitter, display specific parasitic emitter resistances of less than 1×10-7 Ω-cm2. This low parasitic resistance is attributed to an improved n-type contact technology, in which a molybdenum diffusion barrier and a plasma-enhanced chemical vapor deposition SiO2 overlayer are used to achieve low specific contact resistivities  相似文献   

17.
Very small, high-performance, silicon bipolar transistors (SPOTEC) are developed for use in ECL-CMOS LSIs. The transistors are fabricated with a sidewall polycide base; chemical vapor deposition is used to selectively deposit tungsten on the sidewall surface of the polysilicon base. The tungsten is then silicided. This self-aligned polycide technology makes a narrow (0.4-μm wide), low-resistance (7 Ω/□) base electrode possible. Narrow U-groove isolation and narrow collector metallization techniques are used to reduce the transistor area to 10 μm2. A shallow E-B junction and base layer have now been formed by using rapid-vapor-phase doping. The resulting transistors have good I-V characteristics without leakage current or high current gain. They have a high cut-off frequency of 37 GHz (53 GHz with pedestal collector ion implantation and thin epitaxial layer) and small junction capacitances. These transistors facilitate the development of very-high-speed, high-density ULSIs  相似文献   

18.
An advanced three-dimensionally (3-D) stacked-capacitor cell, the spread-vertical-capacitor cell (SVC), was developed. SVC realized a storage capacitance (Cs) of 30 fF with a cell area of 1.8 μm2, a capacitor height of 0.37 μm, and an equivalent SiO2 film thickness of 7 nm for oxide-nitride-oxide (ONO). By extrapolating these results to 256-Mb DRAMs, a Cs of 24 fF is obtained with a cell area of 0.5 μm2, a capacitor height of 0.4 μm, and an equivalent SiO2 thickness of 5 nm, and these values satisfy the specifications for 256-Mb DRAMs. The low capacitor height of SVC makes possible a fabrication process using ArF excimer laser lithography  相似文献   

19.
Large increases in the latchup holding voltage are demonstrated with the use of shallow source-drain junctions in a sub-0.5 μm CMOS process. Holding voltages well above the supply voltage for 2 μm n +/p+ spacings are demonstrated without the use of complex processes such as retrograde wells or buried layers. SIMS data is presented to verify the reduction in junction depths to 0.15 μm for the p+/n-well and 0.14 μm for the n+/p-well junction. The improvement in holding voltage is attributed to reductions in parasitic bipolar transistor gains, due to the increase in base width. Well behaved transistor characteristics are presented using the shallow junction technology  相似文献   

20.
The high speed scaling of an Al0.48In0.52As/In0.53Ga0.47 As submicrometer heterostructure bipolar transistor (HBT) is presented. Transistors with emitter dimensions of 0.5×11 and 3.5×3.5 μm2 exhibit unity current-gain cutoff frequencies of 63 and 70 GHz, respectively. Emitter current density greater than 3.3×105 A/cm2 is demonstrated in a submicrometer AlInAs/InGaAs HBT. The analysis shows that the device speed is limited by the parasitic collector charging time  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号