首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microstructure and mechanical properties of as-cast and different heat treated Mg–3Nd–0.2Zn–0.4Zr (wt.%) (NZ30K) alloys were investigated. The as-cast alloy was comprised of magnesium matrix and Mg12Nd eutectic compounds. After solution treatment at 540 °C for 6 h, the eutectic compounds dissolved into the matrix and small Zr-containing particles precipitated at grain interiors. Further aging at low temperatures led to plate-shaped metastable precipitates, which strengthened the alloy. Peak-aged at 200 °C for 10–16 h, fine β″ particles with DO19 structure was the dominant strengthening phase. The alloy had ultimate tensile strength (UTS) and elongation of 300–305 MPa and 11%, respectively. Aged at 250 °C for 10 h, coarse β′ particles with fcc structure was the dominant strengthening phase. The alloy showed UTS and elongation of 265 MPa and 20%, respectively. Yield strengths (YS) of these two aged conditions were in the same level, about 140 MPa. Precipitation strengthening was the largest contributor (about 60%) to the strength in these two aged conditions. The hardness of aged NZ30K alloy seemed to correspond to UTS not YS.  相似文献   

2.
Aluminum-based 319-type cast alloys are commonly used in the automotive industry to manufacture cylinder heads and engine blocks. These applications require good mechanical properties and in order to achieve them through precipitation hardening, artificial aging treatments are applied to the products. The standard artificial aging treatment for alloy 319, as defined by the T6 heat treatment temper, consists in solution heat-treating the product for 8 h at 495 °C, water quenching at 60 °C, and then artificially aging at 155 °C for 2–5 h.

The present paper reports on aging heat treatments that were performed on four Al–Si–Cu–Mg 319-type alloys: 319 base alloy, Sr-modified 319 alloy, 319 alloy containing 0.4 wt% Mg, and the Sr-modified 319 + 0.4 wt% Mg alloy. This investigation was carried out in order to examine the effect of Sr-modification and additions of Mg on the microhardness, tensile strength and impact properties of 319-type alloys over a range of aging temperatures and times (150–240 °C, for periods of 2–8 h).

The results show that the best combination of properties is found in the Sr-modified alloy containing 0.4 wt% Mg (i.e. alloy 319 + Mg + Sr). Also, the optimum artificial aging temperature changes when Mg is present in the alloy.  相似文献   


3.
The present study investigated the effect of mischmetal as a modifier, as well as the effects of cooling rate and heat treatment on the hardness of non-modified and Sr-modified A319.1, A356.2 and A413.1 Al–Si casting alloys. The main aim of the study was to determine the effect of mischmetal in terms of mischmetal-containing intermetallic phases, as well as the effects of the chemical composition of the alloys, cooling rate and heat treatment on the corresponding hardness values obtained for the alloys in question. Two cooling rates were employed to provide estimated hardness levels of 85 and 110–115 BHN, levels conforming to levels most commonly observed in commercial applications of these alloys.

The hardness measurements revealed that the hardness values of the as-cast alloys were higher at high cooling rates than at low cooling rates. Non-modified alloys (i.e. those with no Sr addition) displayed slightly higher hardness levels compared to the Sr-modified alloys. Also, the hardness decreased with the addition of mischmetal at both cooling rates.

Two peak hardness values were observed at 200 °C/5 h and 240 °C/5 h at high cooling rates in the non-modified A319.1 alloy after aging at different temperatures between 155 °C/5 h and 240 °C/5 h, while the Sr-modified alloy showed only one peak at 200 °C/5 h. Two maximum hardness values were observed at 155 °C/5 h and 180 °C/5 h in both non-modified and Sr-modified alloys at low cooling rates. The alloys containing 0 and 2 wt% mischmetal additions exhibited the highest hardness values at both cooling rates; the hardness decreased with further mischmetal additions.

Peak hardness was observed at 180 °C/5 h in the non-modified and Sr-modified A356.2 alloys under both cooling rate conditions after aging at different temperatures between 155 °C/5 h and 240 °C/5 h. The alloys free of mischmetal exhibited relatively higher levels of hardness than those containing mischmetal. The hardness decreased with increasing mischmetal addition. At the high cooling rates, the non-modified alloys displayed higher hardness values than the Sr-modified alloys, while an opposite trend was observed at the low cooling rate.

The decrease in the hardness values may be attributed to the interaction of the mischmetal with the alloying elements Cu and Mg to form the various intermetallic phases observed. In tying up these elements, the volume fraction of the precipitation-hardening phases formed in the A319.1 and A356.2 alloys (i.e. the Al2Cu and Mg2Si phases) is significantly reduced, thereby decreasing the hardness. The addition of mischmetal was also reported to change the precipitation sequence of the Mg2Si phase in the A356.2 alloy. In the case of the A413.1 alloy, the low content of alloying elements resulted in a weak response of the alloy to the age-hardening process at all aging temperature/time conditions (155 °C/5 h–240 °C/5 h), and at both cooling rates. Thus, no peak hardness was observable in these alloys.  相似文献   


4.
The surface composition of commercially pure Ti, Ti6Al4V and Ti3Al8V6Cr4Zr4Mo during annealing at different constant temperatures was experimentally investigated. Auger electron spectroscopy was used to monitor the APPHs of the specified elements present on the surfaces. The surfaces of Ti and its alloys were contaminated by oxygen and carbon, and the contamination is attributed to the continual uptake of the background gases, even in the UHV chamber. It was found that mainly C and S segregated at 400 °C, and Cl at higher temperatures (500–630 °C) for commercially pure Ti. However, S was the main segregating species for all three samples. The segregation of Al was measured for the Ti6Al4V and Ti3Al8V6Cr4Zr4Mo samples at higher temperatures. The linear least-square fit method was employed to determine the contribution of pure Ti and TiC from the measured APPH's. The AES fitting confirmed the formation of TiC on the surface at temperatures 400–500 °C.  相似文献   

5.
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques.

It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.  相似文献   


6.
The influence of the addition of 0.5 wt.% Sn to Al–7Si–0.3 Mg alloys (356 and A356) on their ageing behaviour and mechanical properties was evaluated. Adding Sn led to a reduction of the iron rich intermetallics volume fraction, and of hardness. During solution heat treatment, Mg went into the solid solution, and Sn particles grew by competitive growth, concentrating at phase boundaries and interfaces. During aging β″ and Si precipitated. In the alloys with Sn, the β″ precipitation was accelerated and its hardening effect was greater, whereas the Si precipitation did not changed significantly. The mechanical properties of the A356 alloy were compatible with the hardening achieved during the heat treatment and to the amount of defects (pores) present in the microstructure. The yield strength and elongation of the A356 + 0.5% Sn alloy decreased after solution heat treatment and with increasing ageing temperature. These detrimental effects were minimized by treating this alloy in the T5 condition at 150 °C.  相似文献   

7.
Structure/property studies were made on an experimental Al-3.18% Li-4.29% Cu-1.17% Mg-0.18% Zr powder alloy, which is of the low density/high modulus type. Alloy powder was made by the P&W/GPD rapid solidification rate (RSR) process, canned, and extruded to bar. The density was 2.458 × 106 g/m3. The material was solution-treated, and aged at 149°C (300°F), 171°C (340°F), and 193°C (380°F), using hardness tests to determine the aging curves. Testpieces solution-treated at 516°C (961°F) showed an average yield strength (0.2% offset) of 43.3 ksi (299 MPa) and ultimate tensile strength of 50.0 ksi (345 MPa), with 1% elongation, which increased to 73.0 ksi (503 MPa) and 73.1 ksi (504 MPa), respectively, with only 0.2% elongation, on peak aging at 193°C (380°F), with a modulus of elasticity of 11.4 × 106 psi (78.3 GPa). Hardness values reached 90–92 RB on aging at 149–193°C (300–380°F). The as-extruded alloy showed superplastic behavior at 400–500°C (752–932°F) with elongations of 80–185% on 25.6 mm, peaking at 450°C (842°F). An RSR Al-2.53% Li-2.82% Mn-0.02% Zr extruded alloy showed only 18–23% elongation at 400–500°C (752–932°F).  相似文献   

8.
The change of magnetoelastic properties after thermal treatments has been investigated for two groups of metallic glasses. (Fe79Co21)75+xSi15−1.4xB10+0.4x (x (at.%)=0, 2, 4, 6, 8, 10) has been studied both in the as-prepared state and after thermal annealing in an applied magnetic field, to achieve a particular domain structure, at temperatures well below the crystallization temperatures. Changes in the ΔE effect, magnetomechanical coupling (k) and internal friction coefficient (Q−1) are reported, reaching values of about 60% of the saturation value ES. Fe64Ni10Nb3Cu1Si13B9 alloys annealed in vacuum for 1 h in the temperature range 350–550 °C showed maximum values of the ΔE effect and k of 61% and 0.85, respectively, accompanied by a minimum value of Q of around 2 for the sample annealed at 460 °C. These variations are related to the progress of nanocrystalization. The properties achieved are among the best reported for magnetomechanical applications.  相似文献   

9.
Ti–6Al–4V (Ti64) sheet specimens were cathodically hydrogenated in sulfuric acid solution at ambient conditions. The hydrogenated specimens were then sent to go through the designed thermohydrogen processing (THP) twice to obtain a nano-sized grain structure. The average grain size of resulted microstructure was found to be 10–20 nm obtained by TEM. Qualitative and quantitative analyses performed by employing X-ray diffractometry (XRD) and elemental analysis (EA) showed that the addition of As2O3 as hydrogenation promoter in electrolyte significantly increased the hydrogen uptake. The high concentration of hydrogen arising from promoter action is the key factor in grain refinement. The optimal processing parameter found for grain-refining Ti64 was: (1) electrolytic hydrogenation at 100 mA cm−2 for 3 h in 1 N H2SO4(aq) by adding 0.1 g L−1 As2O3; (2) β transformation carried out at 850 °C for 1 h in air furnace, followed by a furnace cooling to 590 °C and held for 6 h; (3) oxide film removed and then dehydrogenated at 650 °C and 1.0 × 10−6 Torr for 10 h; (4) repeated the same processes once more.  相似文献   

10.
Electrochromic properties of nanocrystalline MoO3 thin films   总被引:1,自引:0,他引:1  
Electrochromic MoO3 thin films were prepared by a sol–gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO3 thin films. The effects of annealing temperatures ranging from 100 °C to 500 °C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO4/propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO3 thin films heat-treated at 350 °C varied from 80% to 35% at λ = 550 nm (ΔT =  45%) and from 86% to 21% at λ ≥ 700 nm (ΔT =  65%) after coloration. Films heat-treated at 350 °C exhibited the best electrochromic properties in the present study.  相似文献   

11.
To observe the prior austenite grain (PAG) boundaries in high-alloy steels, a novel etchant composed of oxalic acid, hydrogen peroxide, sodium bisulfite, and water has been developed. Etching with this system successfully revealed both the grain boundaries and the deformation bands within grains in high Co–Ni martensitic alloy steels. The carbon content of the alloys used in the test program varied from 0.23% to 0.35%, the cobalt content was in the range 9–13%, and the nickel content was in the range 8–11%. The specimens were austenitized at temperatures in the range 900–1200 °C. The rolling temperatures ranged from 700 °C to 1000 °C. The grain sizes in these alloys and those containing titanium were clearly revealed by optical microscopy following application of the new etchant.  相似文献   

12.
Atomic layer growth of hafnium dioxide from HfCl4 and H2O has been studied at substrate temperatures ranging from 180–600°C. A quartz crystal microbalance was used for the real-time investigation of deposition kinetics and processes affecting the growth rate. It was shown that the layer-by-layer growth was self-limited at temperatures above 180°C. The data of ex situ measurements revealed that the structure, density and optical properties of the films depended on the growth temperature. The absorption coefficient of amorphous films grown at 225°C was below 40 mm−1 in the spectral range of 260–850 nm. The refractive index of the films grown at 225°C was 2.2 and 2.0 at 260 and 580 nm, respectively. The polycrystalline films with monoclinic structure grown at 500°C had about 5% higher refractive index but more than an order of magnitude higher optical losses caused by light absorption and/or scattering.  相似文献   

13.
A. Chan  X.L. Liu  W.K. Chiu   《Composite Structures》2006,75(1-4):185-191
An inverse parameter identification technique using a modified Iosipescu shear test (MIST) has been developed for determining the viscoelastic interlaminar shear modulus of composite laminates. The main component of the technique involves minimising the difference between an experimentally measured and a numerically determined creep response at various elevated temperatures by varying the interlaminar shear modulus terms in the numerical model. Consequently, the ‘optimum’ model for the viscoelastic interlaminar shear modulus can be found at each temperature. These individual models are then combined to form a single ‘master curve’ for which a time-shift function and a Prony-series is fitted. In the present studies, Hexcel F593–18 plain weave pre-preg laminates were investigated. Experimental creep tests were conducted at various temperatures between 40 °C and 150 °C. Through the application of the inverse parameter identification technique, it was determined that the viscoelastic interlaminar shear moduli of the composite material can be effectively modelled by a nine-term Prony series and a third-order polynomial time-shift function.  相似文献   

14.
Pallet lots of frozen okra, peas, and strawberries were stored at: −24°C consstant, ±1°C (−11°F constant); at −24°C (−11°F), but power shutdown overnight, −24°C to −18°C (−11°F to 0°F); at −21°C to −18°C (−6°F to 0°F); and at −18°C to −15°C (0°F to +5°F). The temperature increases in these small rooms were estimated to be similar to the worst conditions that might exist in commercial freezer warehouses. Diurnal fluctuations were much smaller within the packages, particularly in the densely filled products located in the centre of the lots. All three time-temperature indicators provided an approximate history of storage conditions.

Compared to storage at a constant −24°C (−11°F), shutting down power at night yielded 8% saving in energy consumption, which increased to 23% when temperature was brought down to −21°C (−6°F), and to near 30% when temperatures were reduced to −18°C (0°F) only. Weight losses increased from 0.28% in the first chamber to 0.68% in the last chamber. Pouches lost much less weight than cartons, and internal packages less than those on the edge of the lots. Frost formation (in-package desiccation) increased from −24°C to −18°C (11°F to 0°F), and was more severe in the pouches than in the cartons. Clumping was reduced in all treatments with storage time. Sensory quality changes and ascorbic acid were reduced similarly, but the poorest treatment, the last chamber, lost at most half a grade score and up to 10% ascorbic acid. Total solids showed little relation to treatments.

It was tentatively concluded, depending on energy cost and availability, that −20°C to −18°C (−4°F to 0°F), overnight, might be the optimal storage condition for cartons, while pouches might be economically stored at −18°C to −16°C (0°F to 3°F) if for no longer than 6 months.  相似文献   


15.
The magnesium alloys AZ91D and MRI 230D were investigated in form of die-cast specimens with a cast skin. The fine-grained microstructure consists of a dendritic magnesium solid solution and interdentritic precipitates. The cyclic deformation behaviour was characterised in stress-controlled load increase tests and constant amplitude tests by means of mechanical stress–strain hysteresis measurements at room temperature and at T = 150 °C. The MRI alloy leads to higher plastic strain amplitudes and nevertheless higher lifetimes for both temperatures. Load increase tests allow a reliable short-time estimation of the endurance limit under both, room and elevated temperatures. With the physically based fatigue life calculation method “PHYBAL” the lifetime of the magnesium alloys can be calculated on the basis of cyclic deformation data determined in one load increase test and two constant amplitude tests in excellent agreement with the conventionally determined SN curve.  相似文献   

16.
Increased strength to weight ratio of aluminium–lithium alloys has attracted material scientists to develop these for aerospace applications. But commercial scale production of these alloys has always been slow in view of difficulties encountered during addition of lithium and in ensuring homogeneous billet composition. A new technique of Li addition has been adapted, which gives maximum recovery of Li in the billet. Using this technique, aluminium–lithium alloys of two different grades for aerospace application were cast. Billets were hot forged and rolled to the thickness range of 3–4 mm and heat-treated for different temper conditions. Mechanical properties were evaluated in T6 (solution treated and artificial aged), T8 (solution treated, cold worked and artificial aged) and T4 (solution treated and natural aged) temper conditions. Both alloys exhibit a strong natural aging response. Reversion for short periods at 180 °C results in decrease of strength. With artificial reaging strength reaches above the T4 temper condition level. Characterization was carried out using optical microscope (OM) and scanning electron microscope (SEM). Experimental investigation shows that addition of lithium at high melt temperature gives lower recovery of Li, and use of impure aluminium adversely affects the mechanical properties of the alloy in all temper conditions.  相似文献   

17.
An investigation was performed to examine the influence of the matrix structure on the impact properties of a 1.03% Cu, 1.25% Ni and 0.18% Mo pearlitic ductile iron. Specimens were first homogenized at 925 °C for 7 h and a fully ferritic structure was obtained in all ductile iron samples. Then, various heat treatments were applied to the homogenized specimens in order to obtain pearlitic/ferritic, pearlitic, tempered martensitic, lower and upper ausferritic matrix structures. The unnotched charpy impact specimens were tested at temperatures between − 80 °C and + 100 °C; the tensile properties (ultimate tensile strength, 0.2% yield strength and elongation) and the hardnesses of the matrix structures were investigated at room temperature. The microstructures and the fracture surfaces of the impact specimens tested at room temperature were also investigated by optical and scanning electron microscope. The results showed that the best impact properties were obtained for the ferritic matrix structure that had the lowest hardness, yield and tensile strength. Ductile iron with a lower ausferritic matrix had the best combination of ultimate tensile strength, percent elongation and impact energies of all structures.  相似文献   

18.
The damping properties of Zn–22 wt.% Al alloys without and with Sc (0.55 wt.%) and Zr (0.26 wt.%) were investigated. The internal friction of the determined by the microstructure has been measured in terms of logarithmic decrement (δ) using a low frequency inverted torsion pendulum over the temperature region of 10–230 °C. An internal friction peak was separately observed at about 218 °C in the Zn–Al alloy and at about 195 °C in Zn–Al–Sc–Zr alloy. The shift of the δ peak was found to be directly attributed to the precipitation of Al3(Sc, Zr) phases from the alloy matrix. We consider that the both internal friction peak in the alloy originates from grain boundary (GB) relaxation, but the grain boundary relaxation can also be affected by Al–Sc–Zr intermetallics at the grain boundaries, which will impede grain boundary sliding. In addition, Al–Sc–Zr intermetallics at the grain boundaries can pin grain boundaries, and inhibit the growth of grains in aging, which increases the damping stability of Zn–22 wt.% Al alloy.  相似文献   

19.
The growth of III-nitrides on the ferroelectric materials lithium niobate (LN) and lithium tantalate (LT) via molecular beam epitaxy (MBE) using rf plasma source has been investigated. We have found that gallium nitride (GaN) epitaxial layers have a crystalline relationship with lithium niobate (tantalate) as follows: (0 0 0 1) GaN || (0 0 0 1) LN (LT) with [10−10] GaN || [11−20] LN (LT). The surface stability of LN and LT substrates has been monitored by in situ spectroscopic ellipsometry in the vacuum chamber. Three different temperature zones have been discerned; surface degas and loss of OH group (100–350 °C); surface segregation/accumulation of Li and O-species (400–700 °C); surface evaporation of O-species and Li desorption (over 750 °C). However, LT shows only surface degassing in the range of 100–800 °C. Therefore, congruent LN substrates were chemically unstable at the growth temperature of 550–650 °C, and therefore developed an additional phase of Li-deficient lithium niobate (LiNb3O8) along with lithium niobate (LiNbO3), confirmed by X-ray diffraction. On the other hand, LT showed better chemical stability at these temperatures, with no additional phase development. The structural quality of GaN epitaxial layers has shown slight improvement on LT substrates over LN substrates, according to X-ray diffraction. Herein, we demonstrate AlGaN/GaN heterostructure devices on ferroelectric materials that will allow future development of multifunctional electrical and optical applications.  相似文献   

20.
Addition of carbon in the range of 0,14–0.5 wt.% to the Fe3Al-based intermetallic Fe-16wt.%Al (Fe-28at.%Al) alloy results in the formation of a thermally stable dispersion of Fe,AIC carbide phase. The volume fraction of these precipitates increases with increase in carbon content. Processing of these alloys through a combination of air induction melting and electroslag remelting leads to enhanced elevated temperature mechanical properties compared to those reported for the low (< 0.01 wt.%) carbon alloys with similar Al contents. Enhancement of up to 30% in elevated temperature yield strength was observed at the test temperatures (600, 700 and 800°C) used. The improvement in mechanical properties may be attributed to the presence of strengthening Fe3AlC phase as well as the interstitial carbon present in the alloy matrix. The addition of carbon also leads to improved room temperature mechanical properties in contrast with other alloying additions (such as Mo, Ti and Si) used for enhancing elevated temperature properties of Fe3Al-based intermetallic alloys. It is suggested that carbon may be an important alloying addition to these alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号