首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The combined process – aerobic bio-oxidation with activated carbon addition and ozonation was studied (ABO/AC/O3). The performance of the process was compared with conventional aerobic bio-oxidation (ABO). The studies were carried out in two continuous and periodic reactors to evaluate the purification efficiencies (in terms of COD, BOD and resorcinols removal), excess sludge generation and stability of the bioreactors against shock loadings. The parameters in continuous combined process were as follows: organics loading was 620 mgCOD/(day·L), activated carbon concentration 1g/L and ozone dose 2.45 mgO3/L (mg ozone per liter of treated water). In periodic reactors the combined process was studied at lower activated carbon concentration and ozone dose (0.3 g/L and 0.57 mg/L respectively).

The results indicated that compared with conventional ABO, the co-effect of AC addition and short-termed (less than 1 week) or intermittent ozonation improved the removal of COD and BOD, while the longer period of ozonation resulted in reduction of excess sludge concentration in the bioreactor. The impact of AC and ozone on the ABO in the combined process did not concern only increased biomass activity, but AC and ozone improved also settleability of activated sludge and enhanced stability of the bioreactor to shock loadings.  相似文献   


2.
The effect of ozonation on membrane flux and water quality was investigated in an ozonation ultrafiltration (UF) hybrid system. Crossflow UF was performed in total recycle mode to study the effect of ozonation on membrane fouling and disinfection by-product formation potentials of organics. Total organic carbon (TOC), UV absorbance at 254 ran (UV254) and trihalomethane formation potential (THMFP) were measured as water quality parameters.

The effect of ozonation on membrane flux was found to be largely dependent on raw water quality as well as ozone dose. In case of upstream water (A), preozonation achieved significant flux enhancement regardless of ozone dose. Whereas, for the downstream water (B), the steady state flux was increased or decreased depending on ozone dose.

The analysis based on the resistance-in-series model provided the mechanistic interpretation on the membrane flux variation. Ozonation in an ozone-ultrafiltration system always brought about a decrease in cake resistance (Rc) and an increase in fouling resistance (Rf). Based on the measurement of particle size distribution and zeta potential, the reduction in cake resistance through ozonation was attributed to an increase in particle size due to “ozone-induced particle destabilization”. However, the increase in the fouling resistance seems to be caused partly by the microbial characteristics of raw water.

Although there was little effect on TOC, ozone-UF treatment could get much higher removal of UV 254, THMFP (lday) and THMPF/TOC ratio than UF treatment alone.  相似文献   


3.
Experimental studies were carried out on the removal of five species of aromatic nitro hydrocarbons by ozonation. Ultraviolet spectrograms with distinct absorption peaks were plotted for each of them. It has been found that the absorbances of aqueous solutions containing the single compounds mentioned above increase to different extents at the wave lengths ranging from 200 to 230 nanometers with increase of ozone dosages. This is ascribed to the nitrite ions splitting out of the benzene rings and being further oxidized to nitrate ions by ozonation.

It has been indicated that the removal of the five species of aromatic nitro compounds by ozonation can well be expressed mathematically by first order reaction equations. Besides, the reaction constants and half-life periods for various species of the tested nitro compounds were calculated at different temperatures and pH.

An ozonation effect index (OI) was developed in the study to express the degree of degradation of substrates by ozonation, by means of which the five aromatic nitro hydrocarbons were compared with each other and finally ranked in the following order from greatest to smallest degrees of degradation:

p-nitroaniline > nitrobenzene > p-dinitrobenzene > p-nitrotoluene > m-dinitrobenzene

It has also found that the CODm/M ratio increases with ozone doses. This means that some easily degradable intermediates are produced, and increase in concentration with increase of ozone dose in the ozonation process.

The mechanisms of removing the five aromatic nitro hydrocarbons are discussed from the viewpoint of orienting effects of substituent groups on the aromatic rings.  相似文献   


4.
This paper presents results from a water treatment pilot testing program in Winnipeg, Canada (pop. 650,000) which evaluated a DAF/ozone/deep bed filtration process. As part of the testing program, biological filtration using GAC and anthracite media was assessed for the removal of ozone DBPs and background chlorine DBPs (due to upstream chlorination of the source water). The results were used to evaluate the effectiveness of biological filtration for DBP removal.

High filtration rates were tested in this study. The 2.1m deep filters were run at a hydraulic loading rate (HLR) of 35 m/h with an empty bed contact time (EBCT) of only 3.6 minutes.

The important findings of this work are

?The high-rate biologically active carbon (BAC) filters met the objective of controlling ozone DBPs. These results confirm that high rate, low EBCT filters can provide significant biodegradation. Anthracite biofilters provided significantly less removal of ozone DBPs.

?The high rate BAC filters showed significant reduction of background HAAs. BAC reduced the background HAAs to below the long-term target of 30 μg/L. Anthracite biofilters did not exhibit HAA removal.

?Biological filtration with either media was ineffective for background THM removal. The long-term target of 40 μg/L could not be achieved without GAC adsorption.  相似文献   


5.
During drinking-water treatment, ozone used as a preoxidant and chlorine required for final disinfection, lead to competing chemical reactions, in the case of raw water containing both organic compounds and inorganic salts (such as bromides and ammonia).

The study of the interactions between those reactants has been made according to the following main topics :

As for THM formation, experiments conducted on simple organic compounds or on natural fulvic acids show important decreases in THM or TCAA formation after ozonation. It may be noticed, however, that the ozonation of surface waters may induce the formation of haloform precursors, usually with a low level of reactivity.

In water supplies containing bromide ions, oxidation of the latter through hypobromous acid may take place during the ozonation stage. Failing preozonation treatment, hypobromous acid is generated very rapidly during chlorination, thus inducing the formation of chloro- brominated organic compounds.

During the ozonation of fulvic acid solutions, the presence of small amounts of bicarbonate was found to improve precursor removal significantly.

It can be concluded that the partial analogy of the action of ozone or chlorine on aromatic structures, whether simple or complex (such as humic and fulvic acids), seems to indicate that the consequence of preozonation is the destruction, at least in part, of the most reactive sites for THM production, thus leading to a decrease of the volatile organochlorinated compounds formed during the post-chlorination. However, some ozonation products of natural waters are THM precursors, though of low reactivity. Then, in the presence of bromide ions, the formation of volatile organobrominated compounds may be observed during ozonation.  相似文献   


6.
When treating natural water, the simultaneous use of ozone and UV rays can lead to high level oxidation of the ozone–refractory organics. The main parameters affecting the efficiency of the O3/UV system are: the ozonation rate, the average UV radiation intensity, the pH measurement, alkalinity, and the type of compound to be oxidized.

In optimum Ou/UV system application conditions, the abatement of COD in water from the Seine river is never above 30%. On the other hand, TOC removal is increased in weakly carbonated pond water loaded with humic matter. The O3/UV system also ensures oxidation of saturated volatile organic halogens, with the exception of carbon tetrachloride.  相似文献   


7.
The conditions for the removal of iron and manganese contained in slightly mineralized water, rich in humic substances, were determined in a case where an intermediate oxidation was provided in a conventional potabilization line comprising a coagulationflocculation stage with iron salts.

The experiments were conducted both on a synthetic water, with or without addition of humic substances, and on raw water from the Moulin-Papon dam. While iron was easily removed by simply increasing the pH measurement from 8.2 to 8.5 without intermediate oxidation, ozonation applied to water with a pH of nearly 8.4 did not enable the manganese to be removed with a low ozone dose (about 1 mg/L) unless a significant amount of bicarbonates (120 to 130 mg/L as CaCO3) were injected prior to the ozonation-filtration stage.

As it removes the manganese from the water, intermediate ozonation also removes the abatement of organics on the filters, and lowers the THM buildup potential.  相似文献   


8.
This research employed batch ozonation and GAC (granular activated carbon) column to investigate the effect of preozonation dosage on the subsequent GAC adsorption, in terms of the adsorption capabilities for small and large molecules.

For large target compounds like humic acid, the adsorption efficiency was improved with higher ozone dosages, whereas the combined effect of ozonation coupling with GAC for small model compounds seems to be negative. In addition, there is a selective adsorption between the chlorinated disinfection by-product (DBP) precursors and other non-precursors, and most of the non-precursors are less adsorbable than the precursors.  相似文献   


9.
10.
The two corona discharge ozone swimming pool water treatment systems installed in the Peck Aquatic Center in Milwaukee, WI now have been in continuous operation since September, 1987. The two pools are part of the Karl Jewish Campus Facility of the Harold and Judy Sampson Campus of the Milwaukee Jewish Community Center.

The operation of these water treatment systems has shown that safe and high quality pool water is obtained reliably and economically. One pool (Main Pool) is of Olympic size, the other (Learner pool) is designed especially for use by children. Both pools utilize a full corona discharge ozone water treatment system. They were the first ozone systems in the U.S. to be built for public pools using the process of ozonation, flocculation, filtration, ozone removal and residual chlorination.

An extensive testing program was initiated in cooperation with the Wisconsin Department of Health. The bacteriological water quality from these swimming pools was in compliance with Wisconsin State Health Regulations and the German DIN Standard 19,643.

The first year of operation of the Peck Aquatic Center has shown that the corona discharge ozone pool water treatment process can:

1) Operate reliably in a public swimming pool environment without the need for highly or special operator qualifications.

2) Produce continuously bacteria- and virus-free pool water without the harmful and unpleasant effects of chlorine.

3) Creates a user constituency group praising and promoting the use of “minimal chlorine swimming” in the community.  相似文献   


11.
The oxidation of quinoxaline by ozone in aqueous solution is investigated. The chemical and kinetic evolution of the oxidation process at varying pH are followed by means of semi-batch and batch ozonation experiments. Results indicate that quinoxaline ozonation can develop according to both radical and ionic mechanisms whose relative occurrence can be varied by means of addition to the reacting system of radical scavengers or ozone decomposition promoters. It is shown that each mechanism involves an initial attack of ozone to both the homocyclic and heterocyclic rings of quinoxaline. Pyrazinedicarboxylic acid is formed as a stable final product in ionic ozonation, whereas it appears as an intermediate still reactive towards ozone in radical ozonation. Despite this, the radical ozonation of quinoxaline appears to be more selective than ionic zonation with respect to production of pyrazinedicarboxylic acid. Reaction schemes are proposed to account for the observed kinetic behaviors and product formations.

Oxidation experiments have also been extended to pyrazine, and its sensitivity to only radical ozonation is shown.  相似文献   


12.
A computer simulation of a bubble column is established to determine the residual ozone concentration in the air and the dissolved ozone residual in the water. This study is aimed to improve the control of ozonation systems, both technically and economically.

The program is based on mass balances along the contact column, which take into account the ozone consumption due to both the self-decomposition and the reactions with organic compounds contained in the water. The experimental measurements allow quantification of the ozone concentration in the air at the inlet and outlet of the pilot unit, as well as the dissolved ozone concentration at different heights along the column. A relation between the transfer coefficient, kLa, and the superficial velocity of the ozonated air is established. It is specific to the diffusion characteristics of the pilot unit. The kLa then is reintroduced in the program.

The calculated and the measured values are shown to be similar regarding the transfer yields, the dissolved ozone concentrations at the pilot unit outlet and the profiles of dissolved ozone concentrations along the contact column. Using the program, the influence of the most important parameters of ozonation on the transfer (treatment rates, initial ozone concentration in the air, pH and organic content of the water, kLa values) have been simulated.  相似文献   


13.
The efficiency of ozonation and advanced oxidation processes such as ozone/UV, ozone/H2O2 and H2O2/UV was assessed for chlorinated hydrocarbons using a closed batch-type system. 1,1-Dichloropropene (DCPE), trichloroethylene (TCE), 1-chloropentane (CPA), and 1,2-dichloroethane (DCA) were used as model compounds.

The direct reaction between substrates and ozone predominated at lower pH, which resulted in the efficient oxidation of the olefin, DCPE. At higher pH, ozonation resulted in more efficient oxidation of the chlorinated alkanes, with a corresponding decrease in the efficiency of DCPE oxidation. Consistent results were observed for ozone/H2O2 and ozone/UV treatment. Due to slow UV-induced decomposition of H2O2, the process using H2O2/UV (254 nm) resulted in very slow oxidation of all four compounds.

The total ozone requirement to achieve a given degree of elimination (to 37% of the original concentration), δ0.37, was used to assess the combined effects of the direct and indirect reactions for different types of waters.  相似文献   


14.
This paper reflects an investigation of the feasibility of photochemical generation of ozone by irradiating gases containing oxygen with Hg lamps of the highest performance emitting the 185 nm line. Besides the expected photostationary equilibrium, determining factors for practical yields in ozone generation by the 185 nm wavelength are : the reactor and gas temperature, the reactor geometry, and the gas composition, as well as the pressure.

Further developments are expected in the field of lamp construction and also improvement of reactor geometry. A better knowledge of the aging of the lamps is required, as well as of the photochemical reactions of oxygen in the technologies applied.

Systems presently available are most promising for application on small scale or in areas of public water distribution which have no developed structure.

  相似文献   


15.
A study of the ozonation of distillery and tomato wastewaters was carried out in a small bubble contactor in order to obtain kinetic data for scaling-up. Thus, several parameters, such as chemical oxygen demand (COD), 254 nm absorbance (A254) and organic carbon content (OC), were followed during ozonation at different experimental conditions.

For distillery wastewaters all parameters investigated have the highest decreases during the first minutes of ozonation, A254 showing the highest disappearance rates. Thus, during the first fifteen minutes of ozonation an important decrease of the 254 nm absorbance (? 75%) was observed. At further reaction times values of all parameters studied decrease slowly, eventually reaching a plateau value. During approximately the first two hours of reaction, dissolved ozone was never found, which suggested that fast or moderate gas-liquid reactions took place in the wastewaters.  相似文献   


16.
This article deals with the efficiency of an ozonation step in drinking water treatment plants remove pesticides. These tests are carried out with a laboratory technique, the “OZOTEST” method, which simulates operating conditions on site and allows a complete oxidation assessment.

Efficiency of the two oxidant systems – ozone and ozone coupled with hydrogen peroxide – is evaluated for 11 pesticides commonly analyzed in control laboratories. Comparison of the two systems is made in terms of pesticide removal, but also in terms of ozone consumption. Matrix effects and contact time are also taken into account, and an order of reactivity for each system considered is suggested.  相似文献   


17.
An ozonation technology to treat lightly loaded effluents from dye manufacturing processes has been developed. The process uses airgenerated ozone and countercurrent contactors. An intermediate step is included to eliminate OH-radical scavengers and slowly reacting oxidized species from the liquid phase.

A study of ozone efficiency and yield concerning the reduction of TOC and COD levels is presented. The biological degradability.of treated water is discussed. A design and rating calculation procedure for countercurrent contactors is presented. Various waste treatment strategies using separation processes and ozone are discussed briefly. A cost estimate to treat a typical dye effluent in two stages on industrial scale is included.  相似文献   


18.
The Mont Valérien plant supplies water to the western suburbs of Paris. Raw water comes from the River Seine downstream from the city. The old plant comprised two treatment lines: a slow sand filtration line built 80 years ago and a rapid settling and filtration line built in 1960. The process for the upgraded plant was determined after an in-depth study including industrial-scale experiments and laboratory tests.

The new treatment line includes the following: preozonation, oagulationflocculation and settling in a sludge-blanket type settling tank (PULSATOR), rapid gravity sand filtration, ozonation, and granular activated carbon filtration.

Results from laboratory tests used for the design are presented: ozonation rate, advantages for the quality of the treated water, expected reagejit savings, etc.  相似文献   


19.
In water treatment plants equipped with large–scale ozonation facilities, specific safety measures must be constantly reviewed and tested. Safety of employees : in high concentrations, ozone becomes a poisonous gas. This requires adequate means for detection of ozone in traces in the ambient air. ventilation and destruction. individual protection Safety of plant and equipment : ozonation has become an essential phase in the treatment process and ozonators must be fitted with safety devices for the detection and rapid control of hazardous conditions.

Experience shows that the measures taken to ensure the safety of employees also improve safety for plant and equipment, and vice versa. The solutions applied demand extra effort at the design stage of the plant, but in return, they result in notable improvements in operating conditions and costs.  相似文献   


20.
The purely economic aspects of ozonation have, until now, given rise to surprisingly few publications. Yet they are of ever-growing importance in deciding on the choice of a system, if only because the number of competitive technical solutions available for ozone production has greatly increased.

First of all, an obvious fact must be remembered. Each installation is a special case. It is therefore out of the question to present general results with direct across-the-board applications. On the other hand, it is possible to engineer a general methodology for price calculation and apply it to a few specific examples. As operator of a large number of these facilities, Compagnie Générale des Eaux can present economic results in many, widely different technological economic conditions.

Generally speaking, it can be said that the cost of ozonation is increasingly optimized. This technique, considered a few years ago as a luxury, is now technically and economically ready for incorporation on an equal footing in most treatment trains.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号