首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: The effects of beef fat (25%) substitution with rendered beef fat, canola oil, palm oil, or hydrogenated palm oil at varying meat protein levels (8%, 11%, and 14%) were studied in emulsified beef meat batters. There was no significant difference in fat loss among meat batters made with beef fat, rendered beef fat, or palm oil. Hydrogenated palm oil provided the most stable batters at all protein levels. Increasing meat protein to 14% resulted in high fat loss in batters prepared with canola oil, which did not occur in the other formulations. This indicates that the physicochemical characteristics of fat/oil affect emulsion stability. Cooked batter hardness was higher (P < 0.05) when protein level was raised; highest in hydrogenated palm oil batters when compared at similar protein levels. As protein level was raised springiness values were increased in all the meat treatments. Springiness was higher in the canola oil treatments. Light microscopy revealed fat globule coalescence in canola oil meat batters prepared with 14% protein, as well as the development of fat channels and more protein aggregation; both seem to result in lower emulsion stability. Hydrogenated palm oil batters showed fat particles with sharp edges as opposed to the round ones seen in all other treatments.  相似文献   

2.
The effects of pre‐emulsified beef fat and canola oil (CO) (25%) with Tween 80 (T‐80) or sodium caseinate (SC) were studied in beef meat batters prepared at three protein levels (9%, 12% and 15%). Raising meat protein level to 15% resulted in low emulsion stability of products prepared with CO. Using pre‐emulsified beef fat with Tween 80 (BF‐T80) showed significantly higher fat and water losses at all protein levels. There were no differences in fat and water losses between pre‐emulsified beef fat and CO when SC was used at the 9% and 12% protein levels compared to the controls (non pre‐emulsification). Light microscopy revealed fat globule coalescence in the CO meat batters prepared with 15% protein and BF‐T8 treatments, as well as formation of fat channels and more protein aggregation; both resulted in lower emulsion stability. Using SC to emulsify fat/oil produced a finer dispersion of fat globules compared to all the other treatments.  相似文献   

3.
Youssef MK  Barbut S 《Meat science》2011,87(4):356-360
The effects of fat reduction (25.0%, 17.5%, and 10.0%) and substituting beef fat with canola oil or pre-emulsified canola oil (using soy protein isolate, sodium caseinate or whey protein isolate) on cooking loss, texture and color of comminuted meat products were investigated. Reducing fat from 25 to 10% increased cooking loss and decreased hardness. Canola oil or pre-emulsified treatments showed a positive effect on improving yield and restoring textural parameters. Using sodium caseinate to pre-emulsify the oil resulted in the highest hardness value. Cohesiveness was affected by fat type and level. The color of reduced fat meat batters was darker for all, except the beef fat treatments. Using canola oil or pre-emulsified oil resulted in a significant reduction in redness. The results show that pre-emulsification can offset some of the changes in reduced fat meat products when more water is used to substitute for the fat and that pre-emulsification can also help to produce a more stable meat matrix.  相似文献   

4.
The effects of endpoint cooking temperature (40, 50, 60, 70, 80, and 90 °C) on emulsion stability, texture, color, and microstructure of meat batters prepared with different fats/oils were studied. Canola oil treatments showed the highest cooking loss whereas hydrogenated palm oil provided the most stable meat batters. Rendered beef fat was less stable than regular beef fat. Increasing endpoint cooking temperatures resulted in a progressive reduction of water holding capacity in all treatments. As temperature was raised, meat batters showed higher hardness and cohesiveness values, but no appreciable changes in cohesiveness above 60 °C. Canola and hydrogenated palm oil treatments showed the highest hardness and chewiness values. Lightness (L*) values of all meat batters increased significantly with increasing temperature from 40 to 60 or 70 °C; no major changes observed above 70 °C. Light microscopy revealed no substantial changes in the microstructure of all the stable meat batters cooked to between 50 and 70 °C. Heating to 90 °C changed the microstructure in all meat batters except the hydrogenated palm oil treatments, which still showed nonround fat particles and a less aggregated protein matrix.  相似文献   

5.
The effects of fat level (20.0, 12.5 and 5.0%), Inulin (gel-IG, and powder-IP) and β-Glucan (βG) on emulsion stability, color, textural characteristics and microstructure of cooked meat batters were investigated. Reducing fat to 5.0% increased cooking loss and decreased emulsion stability, lightness, hardness and fracturability of cooked emulsions. Inulin, βG, and their mixtures were used as fat replacers in low fat formulations. Adding IP provided better emulsion stability compared to IG, which had no significant effect on stability. IP also produced harder (27–34 N) low fat products with a high fracturability (26–29 N). On the contrary, emulsions containing IG resulted in creamy and softer characteristics. The results were supported by light micrographs, which indicated that appropriate addition of IG and βG mixtures (3%-IG & 0.3%-βG, 6%-IG & 0.6%-βG) could compensate for some of the changes brought about by fat reduction, and maintained several of the textural characteristics of the product as well as reducing cook loss.  相似文献   

6.
The effects of substituting 1.5% of the meat proteins with low gelling soy protein isolate (LGS), high gelling soy protein isolate (HGS), native whey protein isolate (NWP), and preheated whey protein isolate (PWP) were compared at varying levels of proteins (12, 13 and 14%), with all meat control batters prepared with canola oil. Cooking losses were lower for all the non-meat protein treatments compared to the all meat controls. When raising the protein level from 12 to 14%, cooking losses increased in all treatments except for the NWP treatments. Using LGS increased emulsification and resulted in a more stable meat batters at the 13 and 14% protein treatments. Textural profile analysis results showed that elevating protein level increased hardness and cohesiveness. The highest hardness values were obtained for the PWP treatments and the lowest for the HGS, indicating a strong non-meat protein effect on texture modification. Non-meat protein addition resulted in lighter and less red products (i.e., lower red meat content) compared to the all meat controls; color affected by non-meat protein type. Light microscopy revealed that non-meat proteins decreased the frequency of fat globules' agglomeration and protein aggregation. The whey protein preparations and HGS formed distinct “islands” within the meat batters' matrices, which appeared to interact with the meat protein matrix.  相似文献   

7.
The effects of vegetable oils prepared from olive, corn, soybean, canola, or grape seed, and rice bran fiber on the composition and rheological properties of meat batters were studied. Pork fat at 30% in the control was partially replaced by one of the vegetable oils at 10% in addition to reducing the pork fat to 10%. The chemical composition, cooking characteristics, texture properties, and viscosity of low-fat meat batters were analyzed. The moisture, protein, ash content, uncooked and cooked pH values, b-value, hardness, cohesiveness, gumminess, chewiness, and viscosity of meat batters with vegetable oil and rice bran fiber were all higher than the control. In addition, batters supplemented with vegetable oil and rice bran fiber had lower cooking loss and better emulsion stability. Low-fat meat batters with reduced pork fat content (10%) and 10% vegetable oil plus rice bran fiber had improved characteristics relative to the regular fat control.  相似文献   

8.
SUMMARY– Surface tension responses for solutions of salt-soluble protein from cow meat, beef hearts, beef cheek meat, pork trim and pork cheek meat were found to follow the Type III curves assigned to surface-active agents. The stability of emulsions prepared utilizing salt-soluble protein of the meats was significantly affected by concentration of protein and level of oil. As either concentration of protein or of oil was increased, higher and more significant stability of the emulsions was observed. Emulsions prepared from protein of each type of meat had similar responses for stability. High and significant correlation was found between protein surface activity and emulsion stability. Little change in emulsion viscosity was found except at the upper protein and oil levels tested.  相似文献   

9.
Crude polyphenol extracts (15 or 100 mg gallic acid equivalents (GAE)/kg meat) from canola meal reduced the formation of 2-thiobarbituric acid-reactive substances (TBARS) in pre-cooked beef (66–92%), pork (43–75%) and chicken (36–70%). The canola extract contained sinapic (99.7%), ferulic (0.28%) and p-hydroxybenzoic acids (0.07%).  相似文献   

10.
Inclusion of fibers, such as carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC), at the expense of fat or protein in meat batters could be used to produce healthier sausages while lowering production costs. To study the impact of CMC/MCC on structural/functional characteristics of emulsified sausages, standard-fat Lyoner-style sausages were formulated with CMC/MCC at concentrations of 0.3–2.0%. Methods of analysis included rheology, water binding capacity (WBC), texture measurements, and Confocal Laser Scanning Microscopy (CLSM). WBC, texture measurements, and rheology all indicated that addition of CMC (> 0.7%) led to destabilization of the batter, which upon heating could no longer be converted into a coherent protein network, a fact that was also revealed in CLSM images. In contrast, MCC was highly compatible with the matrix and improved firmness (1405–1651 N/100 g) with increasing concentration compared to control (1381 N/100 g) while keeping WBC (4.6–5.9%) with < 2% MCC at the level of the control (4.8%). Results were discussed in terms of molecular interactions of meat proteins with celluloses.  相似文献   

11.
The oxidative and physical stabilities of oil-in-water emulsions containing n-3 fatty acids (25 wt.% oil, 2.5 wt.% whey protein, pH 3.0 or pH 6.0), and their subsequent incorporation into meat products were investigated. The physical stability of fish oil emulsions was excellent and neither coalescence nor aggregation occurred during storage. Oxidative stability was better at pH 6.0 compared to pH 3.0 likely due to antioxidative continuous phase proteins. Incorporation of fish oil emulsions into pork sausages led to an increase in oxidation compared to sausages without the added fish oil emulsion. Confocal microscopy of pork sausages with fish oil emulsions revealed that droplets had coalesced in the meat matrix over time which may have contributed to the decreased oxidative stability. Results demonstrate that although interfacial engineering of n-3 fatty acids containing oil-in-water emulsions provides physical and oxidative stability of the base-emulsion, their incorporation into complex meat matrices is a non-trivial undertaking and products may incur changes in quality over time.  相似文献   

12.
A Raman spectroscopic study was performed to determine protein and lipid structural properties in meat batter containing oil bulking agents as pork backfat replacers. Meat batters were prepared with pork backfat (MB-PF) or with a combination of olive oil, sodium alginate, CaSO4, sodium pyrophosphate and dextrin (MB-A/D) or inulin (MB-A/I) as a fat replacer. Proximate composition, pH, cooking loss (CL), colour and texture were evaluated. MB-A/D and MB-A/I both showed lower (P < 0.05) CL and a values, higher (P < 0.05) L and b values, and higher (P < 0.05) hardness and chewiness. MB-A/I showed the highest hardness and chewiness. Enhancement of the β-sheet structure was observed in MB-A/D and MB-A/I, more so in MB-A/I. There was increased disorder in the oil acyl chains, which involve lipid–protein interactions, in both MB-A/D and MB-A/I. Structural characteristics in proteins and lipids may be associated with specific water and fat binding properties and textural characteristics of meat batters.  相似文献   

13.
Protein concentrate prepared by extraction of fish, deboned poultry by-products, pork back fat, and beef scraps with isopropyl alcohol (IPA) had good functional properties when the extraction was carried out at 45° C and below. Salt soluble protein extracts from the low temperature extracted protein concentrates had the capacity to emulsify oil and water when tested in a model system. The emulsions gelled when heated. When added to meat batters, the protein concentrate showed the capacity to add to the water- and oil-binding capacity of the system. The solvent requirement of the low temperature extraction process using IPA was determined from the solubility curves of fat in mixtures of water and IPA. The higher the fat content the more solvent was required; for the same fat content, an increase in the moisture content resulted in an increase in the solvent requirement.  相似文献   

14.
The effect of boiling, microwaving and grilling on the composition and nutritional quality of beef intramuscular fat from cattle fed with two diets was investigated. Longissimus lumborum muscle from 15 Alentejano young bulls fed on concentrate or pasture was analyzed. Cooking losses and, consequently, total lipids, increased directly with the cooking time and internal temperature reached by meat (microwaving > boiling > grilling). The major changes in fatty acid composition, which implicated 16 out of 34 fatty acids, resulted in higher percentages in cooked beef of SFA and MUFA and lower proportions of PUFA, relative to raw meat, while conjugated linoleic acid (CLA) isomers revealed a great stability to thermal processes. Heating decreased the PUFA/SFA ratio of meat but did not change its n−6/n−3 index. Thermal procedures induced only slight oxidative changes in meat immediately after treatment but hardly affected the true retention values of its individual fatty acids (72–168%), including CLA isomers (81–128%).  相似文献   

15.
Tan SS  Aminah A  Zhang XG  Abdul SB 《Meat science》2006,72(3):387-397
This study was designed to explore the potential of refined, bleached and deodorized (RBD) palm oil (PO) and palm stearin (POs) utilization in chicken frankfurters. A 10 points augmented simplex-centroid design was used to study the effect of chicken fat (CF), PO and POs as well as the interaction of these fats on the emulsion, textural and sensory properties of chicken frankfurters. All frankfurters were formulated to contain approx 25% fat, 52% moisture and 10% protein. No significant difference was found in end chopping temperatures of all meat batters even though the temperature of PO and POs upon incorporation into meat batters was 50°C higher than CF. Strong emulsions were formed as no fluid losses were observed in all the meat batters tested after heating. Texture profiles of the frankfurters containing PO and/or CF were quite similar, but increment of POs raised hardness, chewiness, and shear hardness of the frankfurters. Acceptability of the frankfurters was evaluated using hedonic test. Panelists found no difference in hardness preference between frankfurters made from totally CF and PO, while frankfurters made from POs were rated as hard and brittle. CF was important in determining acceptability of the frankfurters, as reduction of CF in formulation resulted in lower scores in chicken flavor, juiciness, oiliness and overall acceptance of the frankfurters. Frankfurters with sensory acceptability comparable to a commercial one were found to comprise of more than 17% CF, and less than 67% PO and 17% POs of the fat blend.  相似文献   

16.
The emulsion capacity and stability of a new emulsifier containing sodium stearoyl lactylate plus iota carrageenan (SSL/iC) in comparison to caseinate and soy isolate was analysed. The emulsion capacity and stability of SSL/iC in oil/water (O/W) model system emulsions was higher than shown by caseinate and soy isolate. However, the O/W emulsion stability was negatively affected by sodium chloride addition, but positively affected by an increase in temperature. Meat batters were made with caseinate, soy isolate, and SSL/iC at the minimum concentration that showed a good performance (>75% stability) in the O/W emulsions. The emulsifier SSL/iC produced high cook yields and good stability when used in meat batters. However, the cooked meat batters containing SSL/iC showed texture characteristics highly detrimental to the sensory analysis. On the other hand, the addition of 2% potato starch reduced the differences in texture parameters among the samples made with the different emulsifiers.  相似文献   

17.
Chemometric MID-FTIR methods were developed to detect and quantify the adulteration of mince meat with horse meat, fat beef trimmings, and textured soy protein. Also, a SIMCA (Soft Independent Modeling Class Analogy) method was developed to discriminate between adulterated and unadulterated samples. Pure mince meat and adulterants (horse meat, fat beef trimmings and textured soy protein) were characterized based upon their protein, fat, water and ash content. In order to build the calibration models for each adulterant, mixtures of mince meat and adulterant were prepared in the range 2–90% (w/w). Chemometric analyses were obtained for each adulterant using multivariate analysis. A Partial Least Square (PLS) algorithm was tested to model each system (mince meat + adulterant) and the chemical composition of the mixture. The results showed that the infrared spectra of the samples were sensitive to their chemical composition. Good correlations between absorbance in the MID-FTIR and the percentage of adulteration were obtained in the region 1800–900 cm− 1. Values of R2 greater than 0.99, standard errors of calibration (SEC) in the range to 0.0001–1.278 and standard errors of prediction (SEP estimated) between 0.001 and 1.391 for the adulterant and chemical parameters were obtained. The SIMCA model showed 100% classification of adulterated meat samples from unadulterated ones. Chemometric MID-FTIR models represent an attractive option for meat quality screening without sample pretreatments which can identify the adulterant and quantify the percentage of adulteration and the chemical composition of the sample.  相似文献   

18.
S. Barbut 《LWT》2006,39(6):660-664
The effects of adding dry caseinate, whole milk, skim milk, regular, and modified whey protein powders, at a level of 2 g/100 g, to meat batters were studied. All dairy additives, except for the regular whey, significantly reduced cook loss (30-50% reduction). Caseinate and modified whey formed distinct dairy protein gel regions within the meat batters, as revealed by light microscopy. Both also contributed more to enhancing the textural properties of the meat batters compared to the other dairy proteins; i.e., increasing texture profile analysis fracturability, and hardness, respectively. Overall, the most cost-effective ingredient appeared to be the modified whey, which also provided the best moisture retention.  相似文献   

19.
The rheological behaviour of meat batters during heating was analysed as a function of protein level (10–16%), type (pork back or perirenal/peritoneal fat) and amount (10–22%) of fat used. Fat thermal behaviour was studied by differential scanning calorimetry and rheological properties of batters were assessed using non-destructive measurements (thermal scanning rigidity monitor). The higher the protein content, the higher were the rigidity values displayed by the batters, irrespective of fat type, although the magnitude of these values appeared to be dependent on the amount and characteristics of the fat. The lower the fat content, the lower were the rigidity values of the batters. This behaviour pattern was influenced by the amount of protein present. In general, samples containing perirenal/peritoneal fat exhibited lower rigidity values at high temperatures, whereas at less than 35–40 °C, the opposite appeared to be the case.  相似文献   

20.
Freeze-thaw stability of oil-in-water emulsions prepared with native or thermally-denatured soy isolates (NSI and DSI, respectively) as the sole emulsifier and sunflower oil (? = 0.25) has been examined at various protein concentrations (0.5, 1.0 and 2.0% w/v), comparatively with sodium caseinate (SC). The freeze-thaw stability was assessed by measurements of particle size, oiling off and gravitational separation after isothermal storage at −20 °C for 24 h and further thawing. The oil phase remained in liquid state and the amount of ice formed was similar (>97%) whatever the sample type and protein concentration. At 0.5%, NSI and DSI emulsions where highly unstable, exhibiting a coagulated cream layer with appreciable oiling off (>25%), whereas those prepared with SC were more stable, due to their initial lower flocculation degree (FD %) and particle size. For all emulsions, the increase of protein concentration (0.5–2.0% w/v) improves the freeze-thaw stability as a consequence of a decrease of initial FD %. At 2.0%, where is enough protein to cover the interface, a lower coalescence stability of NSI emulsion respect to those prepared with NSI was observed after freeze-thawing. This result can be attributed to the high tendency to aggregation of native soy globulins at subzero temperatures. Notwithstanding this, unlike the SC emulsions, the formation of new flocs in soy isolates-stabilized emulsions during freeze-thawing cannot be totally controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号