首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Theofanous  T.M. Chan  L. Gardner 《Thin》2009,47(6-7):776-787
Structural hollow sections are predominantly square, rectangular or circular in profile. While square and circular hollow sections are often the most effective in resisting axial loads, rectangular hollow sections, with greater stiffness about one principal axis than the other, are generally more suitable in bending. Oval or elliptical hollow sections (EHS) combine the aesthetic external profile of circular hollow sections with the suitability for resisting flexure of rectangular sections, whilst also retaining the inherent torsional stiffness offered by all tubular sections. This paper examines the structural response of recently introduced stainless steel oval hollow sections (OHS) in bending and presents design recommendations. In-plane bending tests in the three-point configuration about both the major and minor axes were conducted. All tested specimens were cold-formed from Grade 1.4401 stainless steel and had an aspect ratio of approximately 1.5. The full moment-rotation responses of the specimens were recorded and have been presented herein. The tests were replicated numerically by means of non-linear finite element (FE) analysis and parametric studies were performed to investigate the influence of key parameters, such as the aspect ratio and the cross-section slenderness, on the flexural response. Based on both the experimental and numerical results, structural design recommendations for stainless steel OHS in bending in accordance with Eurocode 3: Part 1.4 have been made.  相似文献   

2.
This paper presents the numerical simulation and design of cold-formed steel oval hollow section columns. An accurate finite element model was developed to simulate the fixed-ended column tests of oval hollow sections. The material non-linearities obtained from tensile coupon tests as well as the initial local and overall geometric imperfections were incorporated in the finite element model. Convergence study was performed to obtain the optimized mesh size. A parametric study consisted of 100 columns was conducted using the verified numerical model. The failure modes of material yielding, local buckling and flexural buckling as well as interaction of local and flexural buckling were found in this study. The experimental column strengths and numerical results predicted by the parametric study were compared with the design strengths calculated using the current North American, Australian/New Zealand and European specifications for cold-formed steel structures. In addition, the direct strength method, which was developed for cold-formed steel members for certain cross-sections but not cover oval hollow sections, was used in this study. The reliability of these design rules was evaluated using reliability analysis.  相似文献   

3.
G. Kiymaz   《Thin》2005,43(10):776
A series of tests consisting of various cross-section geometries were performed on structural stainless steel circular hollow sections (CHS) subjected to bending. The test program comprised a total of eight tests on CHS in two grades of stainless steel, namely 304 and Duplex 2205. For each grade four sections, each with a different slenderness, were tested, in order to cover a range of structural responses. Measurements of overall geometric imperfections and material properties were conducted. The test strengths are compared with the strengths predicted using the American, Australian and European specifications for cold-formed stainless steel structures. In the light of the test results and code recommendations, strength and cross-section classification criteria for stainless steel circular hollow section members in bending are examined.  相似文献   

4.
Ben Young  Wing-Man Lui 《Thin》2006,44(2):224-234
The paper describes a test program on cold-formed high strength stainless steel compression members. The duplex stainless steel having the yield stress and tensile strength up to 750 and 850 MPa, respectively, was investigated. The material properties of the test specimens were obtained from tensile coupon and stub column tests. The test specimens were cold-rolled into square and rectangular hollow sections. The specimens were compressed between fixed ends at different column lengths. The initial overall geometric imperfections of the column specimens were measured. The strength and behaviour of cold-formed high strength stainless steel columns were investigated. The test strengths were compared with the design strengths predicted using the American, Australian/New Zealand and European specifications for cold-formed stainless steel structures. Generally, it is shown that the design strengths predicted by the three specifications are conservative for the cold-formed high strength stainless steel columns. In addition, reliability analysis was performed to evaluate the current design rules.  相似文献   

5.
The paper presents a complete set of direct strength equations for stainless steel members and sections in compression. The direct strength equations are based on recent research on the local, distortional and member bucking of stainless steel compression members, including the interaction of local and member buckling. The paper summarises the underlying research and presents the direct strength equations in a consistent format using a notation similar to that used in the North American Specification and the Australian Standard for (carbon) steel structures. Direct strength equations are proposed for local, distortional and combined local and member buckling, which fit within the framework of the Australian, North-American and European standards for stainless steel.  相似文献   

6.
The paper deals with the buckling behaviour of stainless steel members with the main focus on developing design formulae for use in the latest version of the European Standard EN 1993-1-4: Eurocode 3-Design of steel structures-Part 1-4: General rules — Supplementary rules for stainless steel. Brussels; 2005.It is based on numerical simulations of single span members of various section type, which are subjected to axial compression and bending. Both flexural buckling and lateral-torsional buckling are dealt with so that the buckling behaviour of both I-sections and hollow sections can be covered.On the basis of these numerical results interaction factors have been derived in context with the design model for member design in Eurocode 3-1-1. For statistical evaluation the test results available from other authors have been used.The outcome of this investigation has been incorporated in the present EN 1993-1-4 as a recommendation in restricted form.  相似文献   

7.
8.
Stainless steels are employed in a wide range of structural applications. The austenitic grades, particularly EN 1.4301 and EN 1.4401, and their low-carbon variants EN 1.4307 and EN 1.4404, are the most commonly used within construction, and these typically contain around 8%–11% nickel. The nickel represents a large portion of the total material cost and thus high nickel prices and price volatility have a strong bearing on both the cost and price stability of stainless steel. While austenitic stainless steel remains the most favourable material choice in many applications, greater emphasis is now being placed on the development of alternative grades with lower nickel content. In this study, the material behaviour and compressive structural response of a lean duplex stainless steel (EN 1.4162), which contains approximately 1.5% nickel, are examined. A total of eight stub column tests and twelve long column tests on lean duplex stainless steel square (SHS) and rectangular hollow sections (RHS) are reported. Precise measurements of material and geometric properties of the test specimens were also made, including the assessment of local and global geometric imperfections. The experimental studies were supplemented by finite element analysis, and parametric studies were performed to generate results over a wider range of cross-sectional and member slenderness. Both the experimental and numerical results were used to assess the applicability of the Eurocode 3: Part 1-4 provisions regarding the Class 3 slenderness limit and effective width formula for internal elements in compression and the column buckling curve for hollow sections to lean duplex structural components. Comparisons between the structural performance of lean duplex stainless steel and that of other more commonly used stainless steel grades are also presented, showing lean duplex stainless steel to be an attractive choice for structural applications.  相似文献   

9.
S.H. Lin  S.I. Yen  C.C. Weng 《Thin》2005,43(12):1831-1851
The design criteria of stainless steel compression member are more complicated than those of carbon steels due to the nonlinear stress strain behavior of the material. In general, the tangent modulus theory is used for the design of cold-formed stainless steel columns. The modified Ramberg–Osgood equation given in the ASCE Standard can be used to determine the tangent modulus at specified level of stresses. However, it is often tedious and time-consuming to determine the column buckling stress because several iterations are usually needed in the calculation. This paper presents new formulations to simplify the determination of flexural buckling stress without iterative process. Taylor series expansion theory is utilized in the study for numerical approximations. The proposed design formulas are presented herein and can be alternatively used to calculate the flexural buckling stress for austenitic type of cold-formed stainless steel columns. It is shown that the column strengths determined by using the proposed design formulas have good agreement with those calculated by using the ASCE Standard Specification. A design example is also included in the paper for cold-formed stainless steel column designed by using the ASCE Standard equations and the proposed design formulas.  相似文献   

10.
This paper investigates the buckling behaviour of cold-formed high strength stainless steel stiffened and unstiffened slender square and rectangular hollow section columns. The high strength duplex material is austenitic-ferritic stainless steel approximately equivalent to EN 1.4462 and UNS S31803. The columns were compressed between fixed ends at different column lengths. A nonlinear finite element model has been developed to investigate the behaviour of stiffened slender square and rectangular hollow section columns. The column strengths, load-shortening curves as well as failure modes were predicted for the stiffened and unstiffened slender hollow section columns. An extensive parametric study was conducted to study the effects of cross-section geometries on the strength and behaviour of the stiffened and unstiffened columns. The investigation has shown that the high strength stainless steel stiffened slender hollow section columns offer a considerable increase in the column strength over that of the unstiffened slender hollow section columns. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. It is shown that the design strengths obtained using the three specifications are generally conservative for the cold-formed stainless steel unstiffened slender square and rectangular hollow section columns, but slightly unconservative for the stiffened slender square and rectangular hollow section columns.  相似文献   

11.
A thermo-mechanical finite element analysis model is developed to predict residual stress patterns in hot-rolled sections. The model is first verified against experimental measurements for residual stresses reported for I-sections reported in the literature. The method is then used to predict residual stresses in elliptical hollow sections. A sensitivity analysis is then conducted to assess the influence of various input parameters of the model on the predicted residual stress patterns. The effects of cross-section geometric parameters on the residual stress distribution are then investigated.A series of column curves is generated providing the compressive capacity of a column as a function of slenderness. The column curves are generated based on a) elasto-plastic geometrically nonlinear analyses, b) including the effect of residual stresses as predicted from thermo-mechanical analyses and c) incorporating initial geometric out-of straightness according to the fundamental buckling mode as predicted from an elastic buckling eigen value analysis. Generated column curves are then compared to those in current design codes. A best fit for the numeric results obtained is conducted to cast them in a format similar to that in the current codes.  相似文献   

12.
对18根冷弯薄壁型钢开口三肢拼合立柱的轴压性能进行了试验研究,试件分为A、B两种截面类型:A类由3根冷弯薄壁C型钢拼合而成;B类由2根冷弯薄壁C型钢和1根U型钢拼合而成。得到了各试件的荷载-位移曲线和破坏特征,并将试验结果与中、美两国相关规范“有效宽度法”和“直接强度法”计算结果进行了初步对比分析。研究结果表明:两类截面长柱(LC)系列立柱的破坏特征分别为弯扭屈曲、弯曲屈曲,而中柱(MC)系列立柱A类截面为畸变屈曲、B类截面为畸变屈曲和弯曲屈曲,短柱(SC)系列立柱均为局部屈曲和畸变屈曲。AISI有效宽度法计算结果对于A、B两类截面LC系列立柱偏于安全;对于SC系列立柱则偏不安全;对于MC系列立柱吻合较好。AISI直接强度法计算结果对于A类截面LC和MC系列立柱偏于安全;对于SC系列立柱则偏不安全;对于B类截面立柱直接强度法计算结果与试验结果相差-16-5%~11-2%。《冷弯薄壁型钢结构技术规范》计算结果与试验结果相比,LC系列立柱偏于安全,而MC和SC系列立柱计算结果与试验结果吻合较好,相差分别为 -8.7%~4.7%和 -7.3%~13.7%。  相似文献   

13.
The maximum strength of high-strength bolted tension flanged joints of circular hollow section members is evaluated using the yield line theory. Theoretical results obtained are compared with tests carried out at University College, Cardiff and the British Steel Corporation, demonstrating that they are in good correlation with each other. Based on this study, a simple design formula is proposed.  相似文献   

14.
Tests and theoretical analysis on the maximum strength of high strength bolted tension flanges joining square hollow section members have been carried out. Yield line theory has been applied in a similar way to that presented in a previous paper. Correlation between test results and theoretical predictions is quite satisfactory. Based on this study, a simple design formula has been proposed.  相似文献   

15.
The objective of the paper is to analyse the influence of initial imperfections on the behaviour of a steel member under compression. The influence of the variability of initial imperfections on the variability of the load-carrying capacity studied has been calculated by sensitivity analysis. The advantages of Sobol’s sensitivity analysis and the most important properties of Sobol’s sensitivity indices are described. The Sobol’s first order sensitivity indices are evaluated in dependence on the nondimensional slenderness. The Sobol’s sensitivity indices are supplemented with a lucid elaboration based on the Monte Carlo method. Material and geometrical characteristics of a steel member IPE 220 were considered to be random quantities the histograms of which were obtained from experiments. Imperfections that have a dominant influence on the load-carrying capacity are identified.  相似文献   

16.
This paper presents a Finite Element (FE) study on Lean Duplex Stainless Steel stub column with built-up sections subjected to pure axial compression with column web spacing varied at different position across the column flanges. The thicknesses of the steel sections were from 2 to 7 mm to encompass a range of section slenderness. The aim is to study and compare the strength and deformation capacities as well as the failure modes of the built-up stub columns. The FE results have been compared with the un-factored design strengths predicted through EN1993-1-4 (2006)?+?A1 (2015) and ASCE8-02 standards, Continuous Strength Method (CSM) and Direct Strength Method (DSM). The results showed that the design rules generally under predict the bearing capacities of the specimens. It’s been observed that the CSM method offers improved mean resistance and reduced scatter for both classes of cross-sections (i.e. slender and stocky sections) compared to the EN1993-1-4 (2006)?+?A1 (2015) and ASCE 8-02 design rules which are known to be conservative for stocky cross-sections.  相似文献   

17.
Residual stresses in cold-rolled stainless steel hollow sections   总被引:1,自引:0,他引:1  
Stainless steel exhibits a pronounced response to cold-work and heat input. As a result, the behaviour of structural stainless steel sections, as influenced by strength, ductility and residual stress presence, is sensitive to the precise means by which the sections are produced. This paper explores the presence and influence of residual stresses in cold-rolled stainless steel box sections using experimental and numerical techniques. In previous studies, residual stress magnitudes have been inferred from surface strain measurements and an assumed through-thickness stress distribution. In the present study, through-thickness residual stresses in cold-rolled stainless steel box sections have been measured directly by means of X-ray diffraction and their effect on structural behaviour has been carefully assessed through detailed non-linear numerical modelling. Geometric imperfections, flat and corner material properties and the average compressive response of stainless steel box sections were also examined experimentally and the results have been fully reported. From the X-ray diffraction measurements, it was concluded that the influence of through-thickness (bending) residual stresses in cold-rolled stainless steel box sections could be effectively represented by a rectangular stress block distribution. The developed ABAQUS numerical models included features such as non-linear material stress-strain characteristics, initial geometric imperfections, residual stresses (membrane and bending) and enhanced strength corner properties. The residual stresses, together with the corresponding plastic strains, were included in the FE models by means of the SIGINI and HARDINI Fortran subroutines. Of the two residual stress components, the bending residual stresses were found to be larger in magnitude and of greater (often positive) influence on the structural behaviour of thin-walled cold-formed stainless steel sections.  相似文献   

18.
The resistance of new type of hollow concrete-filled circular steel tubular members under axial compression is considered. The effect of interaction between steel tube and spun concrete core contact surfaces on composite member compressive strength is analysed. The experimental values of member’s resistance and its mechanical model uncertainty are presented. The necessity to assess the structural safety of precast members exposed to actions in pre-use and use working lives is discussed. Peculiarities of the mechanical model describing the safety margin of ageing and not ageing compression members are analysed. The probability-based assessment of structural safety of particular members (compressive cross-sections) subjected to extreme loadings is presented and illustrated by numerical example.  相似文献   

19.
Ben Young  Ehab Ellobody 《Thin》2007,45(3):330-338
Cold-formed steel unequal angles are non-symmetric sections. The design procedure of non-symmetric sections subjected to axial compression load could be quite difficult. The unequal angle columns may fail by different buckling modes, such as local, flexural and flexural–torsional buckling as well as interaction of these buckling modes. The purpose of this study is to investigate the behaviour and design of cold-formed steel unequal angle columns. A nonlinear finite element analysis was conducted to investigate the strength and behaviour of unequal angle columns. The measured initial local and overall geometric imperfections as well as the material properties of the angle specimens were included in the finite element model. The finite element analysis was performed on fixed-ended columns for different lengths ranged from stub to long columns. It is demonstrated that the finite element model closely predicted the experimental ultimate loads and the behaviour of cold-formed steel unequal angle columns. Hence, the model was used for an extensive parametric study of cross-section geometries. The column strengths obtained from the parametric study were compared with the design strengths calculated using the North American Specification for cold-formed steel structural members. It is shown that the current design rules are generally unconservative for short and intermediate column lengths for the unequal angles. Therefore, design rules of cold-formed steel unequal angle columns are proposed.  相似文献   

20.
利用四节点减缩积分壳单元模拟了椭圆空心截面柱,研究了单轴偏压下高强钢热轧椭圆空心截面柱的力学性能,讨论了热轧椭圆空心截面柱的长外径、短外径、厚度、偏心距及高强钢材料属性对单轴偏压下热轧椭圆空心柱承载能力的影响.结果表明,现有的设计规范如EN 1993-1-1、BS 5950-1、AS4100和Gardner公式等都可以...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号