首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 251 毫秒
1.
郭晓  谭文安 《计算机应用》2017,37(11):3124-3127
为了进一步提高现有图像超分辨率重构方法所得图像的分辨率,提出一种高性能的深度卷积神经网络(HDCN)模型用于重构放大倍数固定的超分辨率图像。通过建立级联HDCN模型解决传统模型重构图像时放大倍数无法按需选择的问题,并在级联过程中引入深度边缘滤波器以减少级联误差,突出边缘信息,从而得到高性能的级联深度卷积神经网络(HCDCN)模型。基于Set5、Set14数据集进行超分辨率图像重构实验,证明了引入深度边缘滤波器的有效性,对比HCDCN方法与其他图像超分辨率重构方法的性能评估结果,展现了HCDCN方法的优越性能。  相似文献   

2.
由于水体本身的特性以及水中悬浮颗粒对光的吸收和散射作用,水下图像普遍存在信噪比(SNR)低、分辨率低等一系列问题,但大部分方法传统处理方法包含图像增强、复原及重建,都依赖退化模型,并存在算法病态性问题。为进一步提高水下图像恢复算法的效果和效率,提出了一种改进的基于深度卷积神经网络的图像超分辨率重建方法。该方法网络中引入了改良的密集块结构(IDB),能在有效解决深度卷积神经网络梯度弥散问题的同时提高训练速度。该网络对经过配准的退化前后的水下图像进行训练,得到水下低分辨率图像和高分辨率图像之间的一个映射关系。实验结果表明,在基于自建的水下图像作为训练集上,较卷积神经网络的单帧图像超分辨率重建算法(SRCNN),使用引入了改良的密集块结构(IDB)的深度卷积神经网络对水下图像进行重建,重建图像的峰值信噪比(PSNR)提升达到0.38 dB,结构相似度(SSIM)提升达到0.013,能有效地提高水下图像的重建质量。  相似文献   

3.
由于图像分辨率低,传输过程中容易出现图像丢失、不清晰现象。针对上述问题,提出一种深度卷积神经网络算法实现图像帧间补偿。首先依据深度卷积神经网络构建图像帧间补偿模型,其次采用稀疏自编码与线性解码方式提取出该补偿模型的图像特征,再通过多层卷积神经网络对图像特征做映射处理,最后根据稀疏算法重建图像帧分辨率,使图像帧间得到补偿。实验结果表明,基于深度卷积神经网络的图像帧补偿实训可以有效提高图像帧分辨率,解决图像丢失问题,实现了图像高清晰化。  相似文献   

4.
基于深度卷积神经网络算法实现网络图像超分辨率重建技术,为满足图像的超分辨率精度检测和构建需求,通过构建图像融合技术来实现图像重建架构,形成以机器人视觉系统数据为主体的控制模块,实现对网络图像超分辨率的图像融合分析的目标,完成深度卷积神经网络图像重建。在深度卷积神经网络图像的构建过程中,注意神经网络输出数据决策方案和图像的自适应预置模块设计,分析深度卷积神经网络的各层节点数,平衡图像分辨率数据深度卷积过程中的信息损失量,提升图像分辨率数据的重建精度。  相似文献   

5.
马凤颖 《软件》2023,(11):121-123
图像超分辨率重建是计算机进行图像处理的底层任务,可以将低分辨率图像进行优化,生成高频细节的高分辨率图像。基于深度学习的图像超分辨率重建算法可以进一步提高重建图像质量与视觉效果,采用轻量化的超分辨率算法可以有效减少重建算法模型所需要的内存空间。本文采用深度学习技术中的基于卷积神经网络的图像超分辨率重建模型,提高图像分辨率,降低计算复杂度。  相似文献   

6.
考虑到卷积神经网络可以通过训练过程引入图像的先验知识,文中提出基于深度学习的芯片图像超分辨率重建.利用卷积神经网络改善迭代反投影法的初始估计图像,通过迭代过程引入图像序列间的互补信息,建立芯片图像的样本集.实验表明,在不同放大倍数下,改进算法的客观评价指标平均值均较高,在芯片图像中的电路密集处,改进算法的主观视觉感受也较好.同时,文中算法适用于自然图像.  相似文献   

7.
彭亚丽  张鲁  张钰  刘侍刚  郭敏 《软件学报》2018,29(4):926-934
图像超分辨率一直是底层视觉领域的研究热点,现有基于卷积神经网络的方法直接利用传统网络模型,未对图像超分辨率属于回归问题这一本质进行优化,其网络学习能力较弱,训练时间较长,重建图像的质量仍有提升空间。针对这些问题,本文提出了基于深度反卷积神经网络的图像超分辨率算法,该算法利用反卷积层对低分辨率图像进行上采样处理,再经深度映射消除由反卷积层造成的噪声和伪影现象,使用残差学习降低网络复杂度,同时避免了因网络过深导致的网络退化问题。在Set5、Set14等测试集中,本文算法的PSNR、SSIM、IFC三项评价指标皆优于FSRCNN,重建图像的视觉效果同样验证了本文算法出色的性能。  相似文献   

8.
图像分类的深度卷积神经网络模型综述   总被引:3,自引:0,他引:3       下载免费PDF全文
图像分类是计算机视觉中的一项重要任务,传统的图像分类方法具有一定的局限性。随着人工智能技术的发展,深度学习技术越来越成熟,利用深度卷积神经网络对图像进行分类成为研究热点,图像分类的深度卷积神经网络结构越来越多样,其性能远远好于传统的图像分类方法。本文立足于图像分类的深度卷积神经网络模型结构,根据模型发展和模型优化的历程,将深度卷积神经网络分为经典深度卷积神经网络模型、注意力机制深度卷积神经网络模型、轻量级深度卷积神经网络模型和神经网络架构搜索模型等4类,并对各类深度卷积神经网络模型结构的构造方法和特点进行了全面综述,对各类分类模型的性能进行了对比与分析。虽然深度卷积神经网络模型的结构设计越来越精妙,模型优化的方法越来越强大,图像分类准确率在不断刷新的同时,模型的参数量也在逐渐降低,训练和推理速度不断加快。然而深度卷积神经网络模型仍有一定的局限性,本文给出了存在的问题和未来可能的研究方向,即深度卷积神经网络模型主要以有监督学习方式进行图像分类,受到数据集质量和规模的限制,无监督式学习和半监督学习方式的深度卷积神经网络模型将是未来的重点研究方向之一;深度卷积神经网络模型的速度和资源消耗仍不尽人意,应用于移动式设备具有一定的挑战性;模型的优化方法以及衡量模型优劣的度量方法有待深入研究;人工设计深度卷积神经网络结构耗时耗力,神经架构搜索方法将是未来深度卷积神经网络模型设计的发展方向。  相似文献   

9.
针对现有无人机导航控制方法存在的控制效果不佳的问题,本文提出一种基于粒子滤波的无人机自主轨迹视觉导航控制方法研究。利用粒子滤波算法,实现对无人机自主轨迹视觉导航控制方法的优化设计。采用栅格法构建无人机飞行环境地图,根据无人机的机械组成结构和工作原理,构建运动状态模型。利用内置的摄像机设备采集视觉图像,执行图像灰度转换、几何校正、滤波等预处理步骤。通过对视觉图像的特征提取,判断当前环境是否存在障碍物。利用粒子滤波算法确定无人机位姿,结合障碍物识别结果规划无人机的自主飞行轨迹。将位置、速度和姿态角的控制量计算结果,输入到安装的导航控制器中,完成无人机的自主轨迹视觉导航控制任务。通过实测分析得出结论:应用设计的导航控制方法,其位置误差、速度误差以及姿态角误差均维持在预设值以下,即设计的导航控制方法具有良好的控制效果。  相似文献   

10.
针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法。构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通道注意力机制,增强高频信息通道的表征能力。引入卷积注意块的特征提取结构,减少高频图像细节信息的丢失。在网络的重建层,引入全局跳远连接结构,进一步丰富重建的高分辨率图像信息的流动。实验结果表明,所提算法在Set5等基准数据集上的PSNR、SSIM比其他基于深度卷积神经网络的方法均明显提升,验证了提出方法的有效性与先进性。  相似文献   

11.
针对滑跑型无人机回收阶段对下滑角跟踪以及触地时姿态角的高要求,设计了一种无人机滑降着陆控制方式。首先,给出了滑降控制系统结构图,在此基础上分别进行了滑降横侧向控制器和滑降纵向控制器的设计,具体进行了直线航迹和圆航迹的控制方法以及下滑段的高度控制量算法的分析。然后,进行了滑降着陆控制模式设计,将滑降过程分解为降高、平飞、下滑以及拉平四个阶段分别进行设计,并在拉平阶段给出了俯偏航距仰角控制量与离地高度的关键技术公式。仿真结果表明,该无人机滑降着陆控制系统平飞段偏航距小于5m,接地时偏航距约为0m;平飞段高度跟踪误差为0m,下滑段高度跟踪误差2m;落地姿态角为0.4度。具有高度控制误差小、偏航距离短、落地姿态角安全性高的优点,能满足滑跑无人机对滑降阶段的控制要求。  相似文献   

12.
赵敏  戴凤智 《计算机科学》2020,47(3):237-241
无人机飞行受到气动阻尼扰动,从而导致控制稳定性不好。当前采用翼型截面气动参数调节的方法进行无人机抗扰控制,以扭角以及振动方向等参数为约束指标,参数调节的模糊度较大,对气动姿态参数调节的稳定性不好。文中提出基于气动参数调节的无人机抗扰动控制算法。该算法根据无人机的飞行工况构建各阶模态对应的气弹耦合方程,在速度坐标系、体坐标系、弹道坐标系三维坐标系下构建无人机的飞行动力学和运动学模型;采用卡尔曼滤波方法实现对无人机飞行参数的融合调节和小扰动抑制处理,并采用末端位置参考模型进行无人机飞行轨迹的空间规划设计;在卡尔曼滤波预估模型中实现对动力学模型的线性化处理,采用气弹模态参数识别方法进行无人机的飞行扰动调节;将姿态控制作为内环,获得位置环状态反馈调节参数;以无人机的升力系数和扭力系数作为气动惯性参数进行飞行姿态的稳定性调节,从而实现无人机抗扰动控制律的优化设计。采集飞机的俯仰角、横滚角和航向角作为原始数据在Matlab中进行仿真分析,仿真结果表明,采用所提方法进行无人机抗扰动控制的稳定性较好,对气动参数进行在线估计的准确性较高,航向角误差降低12.4%,抗扰动能力提升8dB,收敛时间比传统方法缩短0.14 s,无人机飞行的抗扰动性和飞行稳定性得到提高。所提方法在无人机飞行控制中具有很好的应用价值。  相似文献   

13.
为了提高无人机的低空滑翔抗攻击突防和控制能力,提出一种基于快速模型预测的无人机低空滑翔抗攻击突防控制技术。采用融合传感识别技术进行无人机的姿态和位置参数信息采集,分析无人机的低空滑翔控制的物理环境参数模型,构建无人机飞行轨迹地图模型,使用标准卡尔曼滤波器进行无人机低空滑翔抗攻击突防控制信息的融合处理,根据信息融合结果进行控制指令设计。采用动态基元轨迹跟踪方法,得到无人机低空突防控制的滑模面,在有限Morrey空间内采用串联弹性驱动控制方法求得在控制约束参量分布模型的最优解。根据无人机低空突防段的初始位姿参数进行快速模型预测和飞行轨迹跟踪,实现低空滑翔抗攻击突防控制。仿真结果表明,采用该方法进行无人机低空滑翔抗攻击突防控制的精度较高,无人机的姿态参数的自适应调节性能较好。  相似文献   

14.
无人机在整个纵平面飞行过程中,由于飞行姿态角的大幅度变化以及气流的作用,导致机身颤抖,影响飞行稳定性.提出一种基于PID变结构控制的无人机飞行姿态角控制消颤算法,首先进行了无人机飞行姿态角控制系统的被控对象参量分析,构建无人机在姿态角变化剧烈、大迎角飞行时的三通道模型,采用变结构控制方法进行控制器设计.结合小扰动原理和Lyapunov稳定性原理进行扰动抑制和稳定性证明,采用梯度算法调整权值进行飞行姿态角控制的消颤处理,采用自适应算法在线调整权值实现PID变结构控制改进.仿真结果表明:采用该算法进行无人机飞行姿态角控制和消颤处理,大幅度提高无人机飞行定姿的精度,横滚角、俯仰角和航向角的控制精度有较大提高,稳定性和收敛性较好,确保了无人机飞行稳定性.  相似文献   

15.
四旋翼无人机是一种性能优越的垂直起降无人飞行器,能够实现悬停、低速飞行、垂直起降等功能,在军事和民用方面具有重要价值。针对四旋翼无人机的控制系统设计问题,首先分析介绍了四旋翼无人机飞行原理,对其建立动力学模型和运动学模型,然后进行了基于PID控制的控制系统设计,控制系统采用四通道、多闭环的控制结构,包括无人机的姿态控制与轨迹控制。在MATLAB中进行无人机控制系统仿真实现。仿真结果表明,本文所设计的控制系统,能够有效地实现四旋翼无人机的姿态控制、轨迹控制,具有良好的控制精度与响应速度。  相似文献   

16.
随着固定翼无人机飞行任务复杂化,为了实现高精度的空间曲线导航控制,基于L1-Navigation非线性导航控制算法,设计自适应模糊控制器优化固定翼无人机跟踪空间曲线导航控制方法。以球面上的空间八字曲线为例,对八字曲线建模,通过坐标转换求得目标航点位置来计算无人机飞行加速度。为了优化加速度控制无人机跟踪空间曲线性能,在L1-Navigation导航控制器中,针对增益系数设计一个双输入单输出模糊控制系统,以轨迹误差和轨迹误差变化率为输入量,以计算横向加速度的增益系数常数为输出量。最后,在Ardupilot飞控中进行飞行模拟实验,飞行实验表明,所提出方法能够精确跟踪空间曲线路径,并且有很好的自适应性。  相似文献   

17.
研究四旋翼自主飞行控制和轨迹跟踪控制。建立四旋翼动力学模型,通过实验测量与曲线拟合测得旋翼升力和力矩系数。在姿态控制中引入加速度反馈控制,增加闭环零点提升系统稳定和快速跟踪能力,抵消不确定干扰影响。提出一种基于切向速度和法向位置误差反馈控制的轨迹跟踪控制策略,对设定轨迹进行分段逼近跟踪,通过室外轨迹跟踪飞行试验,验证控制策略设计的有效性。  相似文献   

18.
针对三旋翼无人机的研究集中于数学模型分析、简单的控制算法设计等起步阶段,且高度系统空气阻尼系数未知的情况,研究了三旋翼无人机高度系统的控制问题。基于浸入—不变集方法设计了一种控制三旋翼无人机跟踪目标高度的自适应控制器,根据三旋翼无人机飞行运动特点,推导了三旋翼无人机运动数学模型,完成了控制器参数设计和气动参数选择,采用Lyapunov分析方法对所设计控制器的渐近稳定性进行了理论证明,并对未知空气阻尼系数进行了在线估计,最终在三旋翼无人机实验平台上在环仿真实验验证。实验结果表明,高度跟踪误差在0-6秒可较好地趋于收敛,控制阻尼系数估计值也较好地收敛于合理的范围,表明该算法稳态误差小,收敛速度快,具有较好的控制性能和较强的实用性。  相似文献   

19.
针对无人机对目标的识别定位与跟踪,本文提出了一种基于深度学习的多旋翼无人机单目视觉目标识别跟踪方法,解决了传统的基于双目摄像机成本过高以及在复杂环境下识别准确率较低的问题。该方法基于深度学习卷积神经网络的目标检测算法,使用该算法对目标进行模型训练,将训练好的模型加载到搭载ROS的机载电脑。机载电脑外接单目摄像机,单目摄像头检测目标后,自动检测出目标在图像中的位置,通过采用一种基于坐标求差的优化算法进行目标位置准确获取,然后将目标位置信息转化为控制无人机飞行的期望速度和高度发送给飞控板,飞控板接收到机载电脑发送的跟踪指令,实现对目标物体的跟踪。试验结果验证了该方法可以很好的进行目标识别并实现目标追踪  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号