首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Nick Virgilio  Basil D. Favis 《Polymer》2011,52(7):1483-1489
The activity of polystyrene-block-poly(l-lactide) (PS-b-PLLA) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer brushes located at a PS/PLLA interface were employed as a route to control the final microstructure of 95% void volume, ultraporous PLLA scaffolds. The latter were initially prepared from melt-processed quaternary blends of ethylene propylene diene rubber/poly(?-caprolactone)/polystyrene/poly(l-lactide) (EPDM/PCL/PS/PLLA) 45/45/5/5%vol. modified with the diblock copolymers. The blends display a layer comprised of the PS and PLLA phases located at the interface of the co-continuous EPDM and PCL phases. When the PS-b-PLLA copolymer is added, sub-micrometric PLLA droplets are encapsulated within the PS continuous layer phase. In comparison, both the PS and PLLA phases compete for the encapsulation process when the PS-b-PMMA is used, indicating that the microstructure of the PLLA phase can be fine-tuned with an adequate choice of interfacial modifier. These effects were investigated by analyzing the microstructure of ternary high-density polyethylene (HDPE)/PS/PMMA 80/10/10%vol. blends displaying PS/PMMA shell/core composite droplets in a HDPE matrix. An inversion of the shell/core structure is observed when the PS-b-PLLA copolymer is used to compatibilize the PS/PMMA interface, whereas no such restructuring occurs with the PS-b-PMMA. These effects are explained by the activity and swelling powers of the copolymer brushes. For the EPDM/PCL/PS/PLLA quaternary systems modified with the PS-b-PMMA, the PLLA homopolymer phase significantly penetrates and swells the PMMA blocks due to their mutual high affinity, as compared to the classical like-prefers-like compatibilization approach. The swelling of the blocks will tend to bend the interface toward the PS phase in order to minimize the lateral compression of the PMMA blocks. A similar effect explains the reversal of the PS/PMMA shell/core structure in the HDPE/PS/PMMA ternary system. This level of control ultimately leads to quite significant differences in microstructures and surface textures for the PLLA scaffolds.  相似文献   

2.
The effect of copolymer mixtures on the interfacial adhesion between slabs of PS and PMMA was investigated as a function of composition, time and temperature using the asymmetric double cantilever beam (ADCB) method. The nature of the interface was further probed using atomic force microscopy (AFM) and dynamic secondary ion mass spectroscopy (D-SIMS). The results show that mixtures of graft and block copolymers are much more effective than pure block copolymers in enhancing the interfacial adhesion. The most effective mixture consisted of a block copolymer of molecular weight 70K and a copolymer with two PS grafts of molecular weight 30K. This mixture yielded an interfacial fracture toughness of Gc = 127.5 J/m2 as compared with Gc = 38.2 J/m2 and Gc = 3.5 J/m2 for the pure block and graft copolymer, respectively.

Gc at the PS/PMMA interface reinforced only with block copolymer was maximal after an annealing temperature of 150°C for 1 hr. It decreased by an order of magnitude when the temperature was increased to 180°C or the joining time was increased from 1 to 10 hours. Gc at the interface reinforced with a graft/diblock copolymer mixture was also maximum at an annealing temperature of 150°C but it decreased only by a factor of 2 with increasing joining time or temperature. Dynamic Secondary Ion Mass Spectroscopy (DSIMS) data show that this effect may be due to decrease in the diffusion of the copolymer from the interface when the mixture is present, i.e, the diblock copolymer is trapped within the graft copolymer.  相似文献   

3.
N. Passade  C. Creton  Y. Gallot 《Polymer》2000,41(26):173-9263
We studied the fracture behavior of trilayer A/B/A assemblies based on polystyrene (PS) and poly(methylmethacrylate) (PMMA) where the central layer of the A polymer was confined (0.5–200 μm) between two thick plates of the B polymer (1– 3 mm). Diblock and random P(S-MMA) copolymers were used to provide a good stress transfer across the interfaces. Fracture experiments were performed with the double-cantilever beam method and the fracture mechanisms were observed by optical microscopy on microtomed slices of the damaged zone. The measured c of the A/B interface fractured during the test was dependent on the molecular structure at the interface (random copolymer, diblock copolymer or no copolymer), on the crazing stress of the bulk materials and on the interfacial shear stresses. When the phase angle of the loading was even slightly positive, oblique crazes were observed in the PS increasing greatly c. If PS was the central layer, this resulted in a very marked dependence of c on the thickness of the central layer for a thickness range 10–200 μm which was not observed when the PMMA was the central layer. Thermal treatments modifying the interfacial shear stresses were also found to have a very strong effect on c.  相似文献   

4.
The effect of copolymer mixtures on the interfacial adhesion between slabs of PS and PMMA was investigated as a function of composition, time and temperature using the asymmetric double cantilever beam (ADCB) method. The nature of the interface was further probed using atomic force microscopy (AFM) and dynamic secondary ion mass spectroscopy (D-SIMS). The results show that mixtures of graft and block copolymers are much more effective than pure block copolymers in enhancing the interfacial adhesion. The most effective mixture consisted of a block copolymer of molecular weight 70K and a copolymer with two PS grafts of molecular weight 30K. This mixture yielded an interfacial fracture toughness of Gc = 127.5 J/m2 as compared with Gc = 38.2 J/m2 and Gc = 3.5 J/m2 for the pure block and graft copolymer, respectively.

Gc at the PS/PMMA interface reinforced only with block copolymer was maximal after an annealing temperature of 150°C for 1 hr. It decreased by an order of magnitude when the temperature was increased to 180°C or the joining time was increased from 1 to 10 hours. Gc at the interface reinforced with a graft/diblock copolymer mixture was also maximum at an annealing temperature of 150°C but it decreased only by a factor of 2 with increasing joining time or temperature. Dynamic Secondary Ion Mass Spectroscopy (DSIMS) data show that this effect may be due to decrease in the diffusion of the copolymer from the interface when the mixture is present, i.e, the diblock copolymer is trapped within the graft copolymer.  相似文献   

5.
The thermal behavior and properties of immiscible blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with and without PS‐b‐PMMA diblock copolymer at different melt blending times were investigated by use of a differential scanning calorimeter. The weight fraction of PS in the blends ranged from 0.1 to 0.9. From the measured glass transition temperature (Tg) and specific heat increment (ΔCp) at the Tg, the PMMA appeared to dissolve more in the PS phase than did the PS in the PMMA phase. The addition of a PS‐b‐PMMA diblock copolymer in the PS/PMMA blends slightly promoted the solubility of the PMMA in the PS and increased the interfacial adhesion between PS and PMMA phases during processing. The thermogravimetric analysis (TGA) showed that the presence of the PS‐b‐PMMA diblock copolymer in the PS/PMMA blends afforded protection against thermal degradation and improved their thermal stability. Also, it was found that the PS was more stable against thermal degradation than that of the PMMA over the entire heating range. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 609–620, 2004  相似文献   

6.
The behavior of amphiphilic diblock copolymers containing 80–89% of poly(N‐hexylisocyanate) (PHIC) with different hydrophobic segments spread at the air–water interface has been studied. Surface pressure‐area isotherms (π‐A) at the air–water interface were determined. It was found that these diblock copolymers form stable monolayers and the isotherms present a pseudoplateau region at low surface pressure, irrespective of the nature of the partner block: poly(styrene) (PS) or poly(isoprene). Surface pressure variation at the semidilute region of the monolayer was expressed in terms of the scaling laws as power function of the surface concentration. The critical exponents of the excluded volume ν obtained for copolymers with PHIC and PS blocks are 0.58 for the copolymer with 85% of PHIC and 15% of PS, and 0.63 for the copolymer with 89% of PHIC and 11% of PS. The hydrophobicity degree of the diblock copolymers was estimated from the determination of the surface energy values by wettability measurements. The morphology of the monolayers was determined by means of Brewster angle microscopy. Molecular dynamic simulation was performed to explain the experimental behavior of diblock copolymers at the air–water interface. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
We investigated the effect of mixing protocol on the morphology of compatibilized polymer blends made with premade compatibilizer and reactively formed in‐situ compatibilizer in a custom‐built miniature mixer Alberta Polymer Asymmetric Minimixer (APAM). The compatibilized blends show a finer morphology than uncompatibilized blends if the polymers are mixed together in the dry state and then fed into the mixer. It is found that premelting one polymer, and premixing polymers and compatibilizer, both greatly affect the compatibilized blends' morphology. The effects are complex since the dispersed phase particle size and distribution of the compatibilized blends may be smaller or larger when compared with the uncompatibilized system, depending on the material's physical and chemical properties; for example, diblock molecular weight or the preference of copolymer to migrate to a particular phase can change the final morphology. Good mobility of the copolymer to reach the interface is crucial to obtain a finer morphology. Micelles are observed when a high molecular weight diblock copolymer P(S‐b‐MMA) is used for a PS/PMMA blend. Because of its enhanced mobility, no micelles are found for a low molecular weight diblock copolymer P(S‐b‐MMA) in a PS/PMMA blend. For PS/PE/P(S‐b‐E) blends, finer morphology is obtained when P(S‐b‐E) is first precompounded with PS. Because the block copolymer prefers the PE phase, if the P(S‐b‐E) block copolymer is compounded with PE first, some remains inside the PE phase and does not compatibilize the interface. In the case of reactive blend PSOX/PEMA, premelting and holding the polymers at high temperature for 5 min decreases final dispersed phase particle size; however, premelting and holding for 10 min coarsens the morphology. POLYM. ENG. SCI. 46:691–702, 2006. © 2006 Society of Plastics Engineers.  相似文献   

8.
Nanostructure formation in thermosets can allow the design of materials with interesting properties. The aim of this work was to obtain a nanostructured epoxy system by self‐assembly of an amphiphilic diblock copolymer in an unreacted epoxy/amine mixture followed by curing of the matrix. The copolymer employed was polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA). The thermoset system, formed by a diglycidyl ether of bisphenol A‐type epoxy resin and diaminodiphenylmethane hardener, was chosen to ensure the miscibility of most of the PMMA block until matrix gelation. Transparent materials with microphase‐separated domains were obtained for copolymer contents lower than 40 wt%. In systems containing 20 and 30 wt% block copolymer, the PS block formed spherical micelles or worm‐like structures before curing, which were stabilized through curing by the more compatible PMMA block phase. Nanostructured thermoset systems were successfully synthesized for self‐assembled amphiphilic block copolymer–epoxy/amine mixtures for copolymer contents lower than 40 wt%. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
陈韶云  田杜  李奇  钟敏  胡成龙  纪红兵 《化工进展》2021,40(7):3900-3908
利用拉曼光谱成像技术研究了聚苯乙烯/聚甲基丙烯酸甲酯(PS/PMMA)共混薄膜体系及其增容体系(增容剂为PS-b-PMMA嵌段共聚物)的相态结构及化学成分分布。实验结果表明,拉曼Mapping成像技术不仅可以得到PS/PMMA共混体系化学成分的精确分布图,同时也可以获取共混体系中分散相、界面相和连续相的分子指纹光谱。研究发现,共混体系中分散相和连续相组分分布与体系的组成紧密相关,当PS/PMMA质量比30/70时,分散相为PS,连续相为PMMA;当PS/PMMA质量比为50/50时,分散相为PS,但PS分子链仍存在于PMMA连续相中;当PS/PMMA质量比为70/30时,分散相为PMMA,连续相为PS。当增容剂PS-b-PMMA加入到PS/PMMA共混体系中后,分散相粒径减小、分布更加均匀、共混体系相容性指数(Nc)增大,说明PS/PMMA共混体系由完全不相容体系趋向变成半相容性体系,这是因为增容剂能增加PS和PMMA之间的相互作用,降低了体系的相分离程度,改善了共混体系的相容性。  相似文献   

10.
Conductive composites based on polymers and conductive nanofillers are widely studied as a promising material. The rational design of 3D conductive networks in composites is crucial to improve their electrical conductivity and reduce the dosage of nanofillers. Herein, poly(vinylidene fluoride) (PVDF) and polystyrene (PS) bi‐continuous structures with modified carbon nanotubes (CNTs) tailored to anchor at the interface are designed to achieve an ultralow electrical percolation threshold because of the formation of a thin interfacial conductive layer. In this work, the modification of CNTs with poly(methyl methacrylate) (PMMA), which contributes to the improvement of the compatibility between PVDF and CNTs, is effective to control the distribution of CNTs in composites. It promotes the migration of CNTs from the PS phase to the interface of PVDF and PS. Consequently, the interfacial conductive layer is formed at a low CNT content, and the electrical percolation threshold of PVDF/PS/CNTs‐PMMA nanocomposites is only 0.07 vol%, having a great decrease of about 50% compared with that of PVDF/PS/CNTs nanocomposites. Thus, it is demonstrated that the distribution of CNTs can be tailored to anchor at the interface by proper chemical modification to form an interfacial conductive layer and a decrease of percolation threshold can also be achieved.  相似文献   

11.
The influence of morphology on micromechanical deformation behaviour of blends consisting of a lamellar forming styrene/butadiene star block copolymer and polystyrene homopolymer (hPS) was studied by transmission electron microscopy (TEM). The pure star block copolymer and the microphase separated blends revealing lamellar structure with polystyrene (PS) lamella thickness in the range of about 20 nm showed homogeneous plastic deformation of the PS lamellae. The macrophase separated blends with PS particles in lamellar matrix exhibited debonding at the particle–matrix interface associated with extensive plastic deformation of the surrounding matrix. The blends containing PS matrix deformed via crazing.  相似文献   

12.
Park H  Kim JU  Park S 《Nanoscale》2012,4(4):1362-1367
A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process.  相似文献   

13.
Thomas Périé  Ludwik Leibler 《Polymer》2011,52(14):3065-3073
We report a versatile method to achieve strong and tough structured composites by the use of ABC block terpolymers. First, multi-walled carbon nanotubes (MWNT) have been dispersed in solution by poly(styrene-block-butadiene-block-methyl methacrylate) (SBM). The influence of the solvent quality and the block molecular weights have been optimized to obtain long time stability of MWNT suspensions. Electron microscopy observations of the solution show specific localization of the SB blocks close to the nanotubes. Secondly, SBM loaded with 25wt% of MWNT was obtained from solvent cast of the stable suspensions. Composites have been prepared by melt-blending this masterbatch with polyvinylidene difluoride (PVDF). Thanks to compatibility of PVDF and PMMA blocks, the composite is structured exhibiting a mesoscopic dispersion of SBM core shell particles and with SBM copolymers coating carbon nanotubes (CNT). Tensile tests show the toughening of the nanostructured composites.  相似文献   

14.
In this study, pristine as well as polystyrene (PS) and poly(2-vinylpyridine) (P2VP) functionalized multi-wall carbon nanotubes (MWCNTs) were selectively incorporated in homopolymer binary blends of PS/P2VP and diblock copolymer (BCP) of the PS-b-P4VP type [P4VP: poly(4-vinylpyridine)]. Studies on the blends verified the chemical affinity of PS and P2VP grafted MWCNTs to the corresponding phase. Based on the results obtained from the blend systems, MWCNTs were incorporated in a PS-b-P4VP copolymer matrix with lamellar morphology and large amplitude oscillatory shear (LAOS) experiments were performed to achieve orientation of the BCP lamellae. The PS grafted MWCNTs (MWCNT-g-PS) were selectively sequestered in the PS phase and the P2VP grafted MWCNTs (MWCNT-g-P2VP) in the P4VP phase of the diblock copolymer. Unfunctionalized pristine MWCNTs were localized on the PS phase of the blend system and no special preference was observed towards the diblock copolymer PS domains. Small angle X-ray scattering (SAXS) analysis revealed the orientation of the alternating lamellae formed by the diblock copolymer when studied by LAOS. The localization of PS and P2VP grafted MWCNTs on the corresponding blend and BCP phase was also verified by transmission electron microscopy (TEM) studies.  相似文献   

15.
Previous work has shown that the formation of a network structure of nanoparticles within a polymer matrix can significantly reduce nanocomposite flammability and that viscoelastic properties could be utilized to predict their flammability reduction. The present work extends this type of investigation to the study of clay and carbon nanotube nanocomposites. In particular, we study PS/clay, PS/MWNT, PMMA/clay, and PMMA/SWNT nanocomposites. At a clay level of about 10% by mass, the network structure is formed for the PS and the PMMA clay nanocomposites; it requires a level of about 0.5% with the SWNT and 2% with the MWNT. These samples showed significantly reduced mass loss rates of PS and PMMA. However, the solid residues collected from radiative gasification tests of PS/clay and PMMA/clay showed many small cracks, despite the network formation within the initial sample. This is in contrast to the smooth, continuous residues (no cracks or openings) for PS/MWNT and PMMA/SWNT nanocomposites. The cracks in the clay samples are probably formed due to weaker network at elevated temperatures due to weaker bridging interaction between clay platelets as compared to stronger network resulting from dense entanglement and bridging of carbon nanotubes.  相似文献   

16.
The thermal expansion of thin films of symmetric diblock copolymers of polystyrene (PS) and poly(methyl methácrylate) (PMMA) was investigated by X-ray reflectivity. The confinement of the copolymer to the substrate, coupled with the multilayering of the copolymer where PS and PMMA layers are oriented parallel to the substrate, gives rise to unusual thermal expansion characteristics. The total thickness of the film increases as 3αL, where αL is the linear thermal expansion coefficient of the copolymer. Unlike homopolymer films, the thermal expansion of an ordered block copolymer film results in an excessive stretching of the copolymer chains at the interface between the PS and PMMA layers. This excess stretching is a result of the confinement of the junction points of the copolymer chains to the interfaces and the suppression of the lateral expansion of the copolymer. When the stretching of the chains becomes too high, relaxation occurs by transporting copolymer chains to the surface. This is evidenced by a reduction in the period of the multilayer. After the copolymer chains have relaxed, the change in the multilayer period with temperature closely follows αL.  相似文献   

17.
Poly(methyl methacrylate)/styrene/multi‐walled carbon nanotubes (PMMA/PS/MWNTs) copolymer nanocomposites with different contents have been prepared successfully by means of in situ polymerization method. The structure and the microhardness of PMMA/PS/MWNTs copolymer nanocomposites were characterized. The tribological behaviors of the copolymer nanocomposites were investigated by a friction and wear tester under dry conditions. The relative humidity of the air was about 50% ± 10%. Comparing with pure PMMA/PS copolymer, the copolymer nanocomposites showed not only better wear resistance but also smaller friction coefficient. MWNTs could help the nanocomposites dramatically improve the wear resistance property. The mechanisms of the improvements on the tribological properties of the PMMA/PS/MWNTs copolymer nanocomposites were also discussed in detail. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
The effects of physical aging on the thermomechanical properties of polymers were investigated using silicon microcantilever deflection measurements. Polystyrene (PS), polymethylmethacrylate (PMMA), a PS/PMMA blend, or PS-PMMA diblock copolymer were applied to one side of a microcantilever, and the temperature-dependent thermal stress in the polymers was measured. A maximum compressive stress peak was observed for the PS- and PMMA-coated cantilevers during heating but not during cooling, which produced hysteresis. Physical aging of the polymers was found to contribute to the development of the hysteresis properties. The two distinct maximum compressive stress peaks in the PS/PMMA blend coincided with the temperatures at which the pure PS and PMMA peaks occurred, indicating that the glass transitions of each polymer were independent. In contrast, the thermal stress profiles of the PS-PMMA copolymer exhibited a single broad peak at a position intermediate between the peak positions of the pure PS and PMMA, indicating that the PS and PMMA polymers interacted during the glass transition.  相似文献   

19.
Nanostructured thermosetting composites based on an epoxy matrix modified with poly(isoprene‐b‐methyl methacrylate) (PI‐b‐PMMA) block copolymer were prepared through PI block segregation. Morphological structures were examined by means of atomic microscopy force microscopy. As epoxy/pristine multi‐walled carbon nanotubes (MWCNT) systems were found to present big agglomerations, with a very poor dispersion of the nanofiller, epoxy/PI‐b‐PMMA/MWCNT systems were prepared by using polyisoprene‐grafted carbon nanotubes (PI‐g‐CNT) to enhance compatibility with the matrix and improve dispersion. It was found that the functionalization of MWCNT with grafted polyisoprene was not enough to totally disperse them into the epoxy matrix but an improvement of the dispersion of carbon nanotubes was achieved by nanostructuring epoxy matrix with PI‐b‐PMMA when compared with epoxy/MWCNT composites without nanostructuring. Nevertheless, some agglomerates were still present and the complete dispersion or confinement of nanotubes into desired domains was not achieved. Thermomechanical properties slightly increase with PI‐g‐CNT content for nanostructured samples, whereas for nonnanostructured epoxy/PI‐g‐CNT composites they appeared almost constant and even decreased for the highest nanofiller amount due to the presence of agglomerates. Compression properties slightly decreased with block copolymer content, while remained almost constant with nanofiller amount. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
I.A. Zucchi 《Polymer》2005,46(8):2603-2609
Polystyrene (PS, Mn=28,400, PI=1.07), poly(methyl methacrylate) (PMMA, Mn=88,600, PI=1.03), and PS (50,000)-b-PMMA (54,000) (PI=1.04), were used as modifiers of an epoxy formulation based on diglycidyl ether of bisphenol A (DGEBA) and m-xylylene diamine (MXDA). Both PS and PMMA were initially miscible in the stoichiometric mixture of DGEBA and MXDA at 80 °C, but were phase separated in the course of polymerization. Solutions containing 5 wt% of each one of both linear polymers exhibited a double phase separation. A PS-rich phase was segregated at a conversion close to 0.02 and a PMMA rich phase was phase separated at a conversion close to 0.2. Final morphologies, observed by scanning electron microscopy (SEM), consisted on a separate dispersion of PS and PMMA domains. A completely different morphology was observed when employing 10 wt% of PS-b-PMMA as modifier. PS blocks with Mn=50,000 were not soluble in the initial formulation. However, they were dispersed as micelles stabilized by the miscible PMMA blocks, leading to a transparent solution up to the conversion where PMMA blocks began to phase separate. A coalescence of the micellar structure into a continuous thermoplastic phase percolating the epoxy matrix was observed. The elastic modulus and yield stress of the cured blend modified by both PS and PMMA were 2.64 GPa and 97.2 MPa, respectively. For the blend modified by an equivalent amount of block copolymer these values were reduced to 2.14 GPa and 90.0 MPa. Therefore, using a block copolymer instead of the mixture of individual homopolymers and selecting an appropriate epoxy-amine formulation to provoke phase separation of the miscible block well before gelation, enables to transform a micellar structure into a bicontinuous thermoplastic/thermoset structure that exhibits the desired decrease in yield stress necessary for toughening purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号