首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Quantitative time-dependent images of the infrared radiation intensity from methane and dimethyl ether (DME) turbulent nonpremixed and partially premixed jet flames are measured and discussed in this work. The fuel compositions (CH4/H2/N2, C2H6O/H2/N2, CH4/air, and C2H6O/air) and Reynolds numbers (15,200–46,250) for the flames were selected following the guidelines of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF Workshop). The images of the radiation intensity are acquired using a calibrated high speed infrared camera and three band-pass filters. The band-pass filters enable measurements of radiation from water vapor and carbon dioxide over the entire flame length and beyond. The images reveal localized regions of high and low intensity characteristic of turbulent flames. The peak mean radiation intensity is approximately 15% larger for the DME nonpremixed flames and 30% larger for the DME partially premixed flames in comparison to the corresponding methane flames. The trends are explained by a combination of higher temperatures and longer stoichiometric flame lengths for the DME flames. The longer flame lengths are attributed to the higher density of the DME fuel mixtures based on existing flame length scaling relationships. The longer flame lengths result in larger volumes of high temperature gas and correspondingly higher path-integrated radiation intensities near and downstream of the stoichiometric flame length. The radiation intensity measurements acquired with the infrared camera agree with existing spectroscopy measurements demonstrating the quantitative nature of the present imaging technique. The images provide new benchmark data of turbulent nonpremixed and partially premixed jet flames. The images can be compared with results of large eddy simulations rendered in the form of quantitative images of the infrared radiation intensity. Such comparisons are expected to support the evaluation of models used in turbulent combustion and radiation simulations.  相似文献   

2.
The extinguishment characteristics of CO2 as a fire-suppressing agent have been studied experimentally and numerically using a methane-air laminar co-flow diffusion flame stabilized on a cup burner. Direct numerical simulations of cup-burner flames under various gravitational forces were performed using a time-dependent, axisymmetric mathematical model with a detailed-chemical-kinetic mechanism for CH4/O2 combustion. Experiments with cup-burner flames under normal-gravity (1g) conditions were performed for comparison purposes. Both the computed flicker frequency and the predicted critical concentration of CO2 for extinguishing the flame compared well with the respective quantities measured in the experiments. As the buoyancy force is reduced, the flicker frequency decreases, the flame diameter increases, the tip opens, and the base becomes vertical. It is predicted that the cup-burner flame ceases to flicker for gravitational forces corresponding to less than 0.5g. Numerical experiments revealed that radiative heat loss is predominantly responsible for flame quenching (opening) in the tip region under microgravity (0g) conditions. In contrast, 1g flames are affected only slightly by the radiative heat loss. Calculations are made by adding different amounts of CO2 to the air stream for obtaining the critical volume fraction of CO2 to extinguish 0g flames. The behavior is similar to that observed in 1g flames: the addition of CO2 destabilizes the flame base, which then moves downstream in search of a new stabilization location. For CO2 volume fractions greater than 19.1%, the flame base moves out of the computational area, as it cannot find a stabilization point within the domain. This critical concentration for the 0g flames is ∼32% higher than that computed for the same flames under 1g conditions. Calculations made by ignoring radiation for the limiting flame under 0g conditions yielded a stable flame. This study suggests that it is important to consider radiation heat losses when estimating the extinguishment limits of cup-burner flames in microgravity.  相似文献   

3.
The stability characteristics of partially premixed turbulent lifted methane flames have been investigated and discussed in the present work. Mixture fraction and reaction zone behavior have been measured using a combined 2-D technique of simultaneous Rayleigh scattering, Laser Induced Predissociation Fluorescence (LIPF) of OH and Laser Induced Fluorescence (LIF) of C2Hx. The stability characteristics and simultaneous mixture fraction-LIPF-LIF measurements in three lifted flames with originally partially premixed jets at different mean equivalence ratio and Reynolds number are presented and discussed in this paper. Higher stability of partially premixed flames as compared to non-premixed flames has been observed. Lifted, attached, blow-out and blow-off regimes have been addressed and discussed in this work. The data show that the mixture fraction field on approaching the stabilization region is uniquely characterized by a certain level of mean and rms fluctuations. This suggests that the stabilization mechanism is likely to be controlled by premixed flame propagation at the stabilization region. Triple flame structure has been detected in the present flames, which is likely to be the appropriate model at the stabilization point.  相似文献   

4.
采用本生灯法和直管法测定了液化石油气(LPG)、甲烷与氢燃料质子交换膜燃料电池(PEMFC)阳极尾气与空气的三种不同浓度混合气的层流火焰传播速度。此外,对三种不同浓度可燃混合气火焰的稳定传播界限也进行了测定。实验结果为多燃料燃烧器的开发提供了设计依据。  相似文献   

5.
The steady isobaric combustion of premixed tubular flames undergoing a direct one-step irreversible Arrhenius-type exothermic global reaction with a constant but general Lewis number is studied in the physically interesting limit of large activation energy. This analysis applies the combustion approximation and differs from previous asymptotic analyses of tubular flames by applying the Hirschfelder boundary condition at the burner exit for chemical species and the application of the delta-function closure scheme. The analysis yields a solution for flame sheet position, flame temperature, heat loss rate to the burner, temperature in the burned region, and stabilization limits as functions of the mass flow rate supplied to the burner and temperature of the burner surface in the near equidiffusional flame limit. Results predict the existence of dual flame behavior consistent with other investigations on the planar and cylindrical burner-stabilized flame. Two stabilization limits are identified, one for approaching flames, consistent with previous studies, and one for receding flames that has not been reported to date. Flame temperature profiles predict a nonmonotonic response, unique to the tubular flame. Consistent with the excess enthalpy of the tubular flame, the results demonstrate a strong dependence of a Lewis number differing from unity. Previous asymptotic analyses of tubular flames with a plug flow boundary condition for mass fraction are reanalyzed with the application of the delta-function closure scheme. Unlike previous results, the analysis predicts an interesting dual response for the temperature in the burned region.  相似文献   

6.
An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-exited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed ∼¼ of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate for all flames.  相似文献   

7.
In this study, experimental and numerical investigations of laminar jet diffusion flames using carbon-monoxide – hydrogen mixtures are carried out. Using a simple experimental setup, high definition direct flame photographs and shadowgraphs are captured, and radial temperature profiles at two axial locations are measured. Numerical simulations of carbon-monoxide – hydrogen jet diffusion flames have been carried out using a comprehensive computational model, along with simplified detailed chemical kinetics mechanism having 14 species and 38 reactions, and an optically thin approximation based radiation sub-model. Validation of the numerical model is carried out by comparing the measured and predicted temperature profiles, and experimental shadowgraph images with second derivative of the predicted density field. Results from the numerical simulations provide insights to the structures, species and thermal fields of flames for varying hydrogen content in the fuel mixture. It is observed that the axial extent of the maximum temperature zone tends to move towards the burner exit as the percentage of hydrogen in the fuel increases. It is also observed that the maximum mass fraction of carbon-dioxide decreases and those of OH and water vapour increase with increasing percentage of hydrogen in the fuel. Radial distributions of important species are presented for varying hydrogen content in the fuel mixture, which clearly illustrate the structure of the flame. Radial profiles of net reaction rates of major species and net rates of few important reactions are presented. As hydrogen is added, the reaction zone moves out in the radial direction, increasing the radius of the flame.  相似文献   

8.
A new approach and experimental technique are proposed to determine times of metal particle combustion in flames of polydisperse aerosols. Laminar flames are produced in air at 1 atm, using aerosol jets formed by an electrostatic particulate method. The flame radiation intensities as a function of vertical coordinate are measured and compared with the flame radiation profiles reconstructed using experimental data and simplified models. The experimental data used include particle size distributions, flame velocities, and temperatures of metal ignition and combustion. The simplified models describe the particle ignition delay, combustion time, and particle flame radiation intensity as a function of particle diameter, D. Variable parameters of the models describing particle radiation intensities and combustion times are adjusted to achieve the best fit between the reconstructed and measured flame radiation profiles. A set of parameters providing the best agreement between the reconstructed and measured profiles is selected for several aerosol flames produced by powders of different sizes of the same material. These parameters are assumed to adequately describe particle combustion times and radiation intensities for the chosen material. The experimental radiation profiles for both aluminum and magnesium aerosol flames with particles of different sizes were found to be in very good agreement with the respective reconstructed profiles. For both metals, particle radiation intensities were well described by a D3-type expression. The combustion times for magnesium aerosol particles were well described by the traditional D2-law with the evaporation constant close to those reported earlier for single particles. Aluminum aerosol particle combustion was better described by a D1-law and combustion times of fine (<80 μm) aluminum particles in the aerosol were somewhat longer than the reported earlier combustion times for single aluminum particles.  相似文献   

9.
Methane-air partially premixed flames subjected to grid-generated turbulence are stabilized in a two-slot burner with initial fuel concentration differences leading to stratification across the stoichiometric concentration. The fuel concentration gradient at the location corresponding to the flame base is measured using planar laser induced fluorescence (PLIF) of acetone in the non-reacting mixing field. Simultaneous PLIF of the OH radical and particle image velocimetry (PIV) measurements are performed to deduce the flow velocity and the flame front. These flames exhibit a convex premixed flame front and a trailing diffusion flame, with flow divergence upstream of the flame, as indicated by the instantaneous OH–PLIF, Mie scattering images, and PIV data. The mean streamwise velocity profile attains a global minimum just upstream of the flame front due to expansion of a gases caused by heat release. The flame speed measured just upstream of the flame leading edge is normalized with respect to the turbulent stoichiometric flame speed that takes into account variations in turbulent intensity and integral length scale. The turbulent edge flame speed exceeds the corresponding stoichiometric premixed flame speed and reaches a peak at a certain concentration gradient. The mean tangential strain at the flame leading edge locally peaks at the concentration gradient corresponding to the peak flame speed. The strain varies non-monotonically with the flame curvature unlike in a non-stratified curved premixed flame. The mechanism of peak flame speed is explained as the competition between availability of hot excess reactants from the premixed flame branches to the flame stretch induced due to flame curvature. The results suggest that the stabilization of lifted turbulent partially premixed flames occurs through an edge flame even at a relatively gentle concentration gradient. The strain is also evaluated along the flame front; it peaks at the flame leading edge and decreases gradually on either side of the leading edge. The present results also show qualitatively similar trends as those of laminar triple flames.  相似文献   

10.
Partially premixed combustion is involved in many practical applications, due to partial premixing of combustible and oxidant gases before ignition, or due to local extinctions, which lead to mixing of reactants and burned gases. To investigate some features of flames in stratified flows, the stabilization processes of lifted turbulent jet flames are studied. This work offers a large database of liftoff locations of flames stabilized on turbulence-free jets for different fuels and nozzle diameters studied over their flame stability domains. Methane, propane, and ethylene flames are investigated for nozzle diameters of 2, 3, 4, and 5 mm. Blowout velocities are measured and compared with an approach based on large-scale structures of the jet. The axial and radial locations of the flame base are measured by planar laser-induced fluorescence (PLIF) of the OH radical through high sampling (at least 5000 points). From this large database the average locations of the flame base are analyzed for the fuels investigated. The pdfs exhibit an evolution of their shapes according to the region of the turbulent jet where the flame stabilizes (potential core, transition to turbulence, or fully developed turbulence regions). This dependence is probably due to the interaction of the flame with the jet structures. This is confirmed by the comparison between the amplitude of the height fluctuations and the local size of the large-scale structures deduced from particle image velocimetry measurements and self-similarity laws for velocity. The results show the flame can be carried over a distance equal to the local diameter of the jet within the region of fully developed turbulence for propane and ethylene, and over a slightly larger distance for methane.  相似文献   

11.
The complicated flame stabilization mechanisms and flame/flow interactions in the blowout of turbulent nonpremixed jet flames are experimentally studied using phenomenological observation, 2D Rayleigh scattering, 2D laser-induced predissociative fluorescence (LIPF) images of OH, and particle image velocimetry (PIV) techniques. The blowout process may be categorized into four characteristic regions: pulsating, onset of receding, receding, and extinction. Based on experimental findings, a blowout mechanism is proposed. The maximum “waistline” point of the stoichiometric contour, defined as the point where the radial distance between the elliptic stoichiometric contour and the jet axis reaches a maximum value, can be regarded as the dividing point separating the unstable and stable regions for the lifted flame in the blowout process. If the flame base is pushed beyond the maximum “waistline” point, the flame will step into the pulsating region and become unstable, triggering the blowout process. The triple flame structure is identified and found to play an important role in flame stabilization within the stable liftoff and pulsating regions. In the pulsating region, the stabilization point of the triple flame moves along the stoichiometric contour, stabilizing the flame where the flame base is bounded by the contours of lean and rich limits. If the flame is pushed beyond the tip of the stoichiometric contour, the stabilization point and triple flame structure vanish and the flame becomes lean. The flame then recedes downstream continuously and finally extinguishes.  相似文献   

12.
基于多喷嘴对置式气化炉热态试验装置,以光学分层成像和Planck辐射定律为理论基础,建立了一种采用单套面阵CCD相机测量气化炉内三维温度场的方法.火焰监测系统安装在气化炉顶部以采集火焰图像,热电偶以及另一只相机与内窥镜组合以验证计算得到的温度场.结果表明,气化炉内整体温度维持在1,300,K左右,撞击火焰在喷嘴平面上下200,mm内形成1,950~2,150,K的高温区;该算法能够很好地还原炉内火焰的内部结构,较为准确地反映气化炉三维空间内各区域的温度分布.  相似文献   

13.
The uncertainties associated with the extraction of laminar flame speeds through extrapolations from directly measured experimental data were assessed using one-dimensional direct numerical simulations with focus on the effects of molecular transport and thermal radiation loss. The simulations were carried out for counterflow and spherically expanding flames given that both configurations are used extensively for the determination of laminar flame speeds. The spherically expanding flames were modeled by performing high fidelity time integration of the mass, species, and energy conservation equations. The simulation results were treated as “data” for stretch rate ranges that are encountered in experiments and were used to perform extrapolations using formulas that have been derived based on asymptotic analyses. The extrapolation results were compared then against the known answers of the direct numerical simulations. The fuel diffusivity was varied in order to evaluate the flame response to stretch and to address reactant differential diffusion effects that cannot be captured based on Lewis number considerations. It was found that for large molecular weight hydrocarbons at fuel-rich conditions, the flame behavior is controlled by differential diffusion and that the extrapolation formulas can result in notable errors. Analysis of the computed flame structures revealed that differential diffusion modifies the fluxes of fuel and oxygen inside the flame and thus affect the reactivity as stretch increases. Radiation loss was found to affect notably the extracted laminar flame speed from spherically expanding flame experiments especially for slower flames, in agreement with recent similar studies. The effect of radiation could be eliminated however, by determining the displacement speed relative to the unburned gas. This can be achieved in experiments using high-speed particle image velocimetry to determine the flow velocity field within the few milliseconds duration of the experiment. In general, extrapolations were found to be unreliable under certain conditions, and it is proposed that the raw experimental data in either flame configurations are compared against results of direct numerical simulations in order to avoid potential falsifications of rate constants upon validation.  相似文献   

14.
To understand hydrogen jet liftoff height, the stabilization mechanism of turbulent lifted jet flames under non-premixed conditions was studied. The objectives were to determine flame stability mechanisms, to analyze flame structure, and to characterize the lifted jet at the flame stabilization point. Hydrogen flow velocity varied from 100 to 300 m/s. Coaxial air velocity was regulated from 12 to 20 m/s. Simultaneous velocity field and reaction zone measurements used, PIV/OH PLIF techniques with Nd:YAG lasers and CCD/ICCD cameras. Liftoff height decreased with increased fuel velocity. The flame stabilized in a lower velocity region next to the faster fuel jet due to the mixing effects of the coaxial air flow. The non-premixed turbulent lifted hydrogen jet flames had two types of flame structure for both thin and thick flame base. Lifted flame stabilization was related to local principal strain rate and turbulent intensity, assuming that combustion occurs where local flow velocity and turbulent flame propagation velocity are balanced.  相似文献   

15.
Simultaneous OH planar laser-induced fluorescence (PLIF) and Rayleigh scattering measurements have been performed on 2-bar rich iso-octane-air explosion flames obtained in the optically accessible Leeds combustion bomb. Separate shadowgraph high-speed video images have been obtained from explosion flames under similar mixture conditions. Shadowgraph images, quantitative Rayleigh images, and normalized OH concentration images have been presented for a selection of these explosion flames. Normalized experimental equilibrium OH concentrations behind the flame fronts have been compared with normalized computed equilibrium OH concentrations as a function of equivalence ratio. The ratio of superequilibrium OH concentration in the flame front to equilibrium OH concentration behind the flame front reveals the response of the flame to the thermal-diffusive instability and the resistance of the flame front to rich quenching. Burned gas temperatures have been determined from the Rayleigh scattering images in the range 1.4???1.9 and are found to be in good agreement with the corresponding predicted adiabatic flame temperatures. Soot formation was observed to occur behind deep cusps associated with large-wavelength cracks occurring in the flame front for equivalence ratio ??1.8 (C/O?0.576). The reaction time-scale for iso-octane pyrolysis to soot formation has been estimated to be approximately 7.5-10 ms.  相似文献   

16.
This work presents a numerical study of the stabilization diagram of methane/air premixed flames in a finite porous media foam with a uniform ambient temperature. A set of steady computations are considered, using a 1D numerical model that takes into account solid and gas energy equations as well as chemistry and radiation models. The present results show that both stable and unstable solutions, for upper and lower flames, exist either at the surface or submerged in the porous matrix. The influence of the 1D computational domain, boundary conditions, and gas/solid interface treatment on the stability of the calculated flames is also discussed. A linearized version of the discrete-ordinates radiation model is included in the linear stability analysis to discuss the influence of radiation on the stability of the flames. The full stabilization diagram and the linear stability analysis provide information on the stability of the flames, pointing to the existence of unstable upstream surface flames as well as unstable submerged flames on the downstream part of the porous media.  相似文献   

17.
Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames.  相似文献   

18.
Dan Zhang  Sen Li 《亚洲传热研究》2019,48(4):1370-1380
We present imaging results and radiation measurements from laminar jet diffusion flames burning in coflowing air conditions. Color and pseudocolor flames are obtained and used to analyze flame brightness and shape, which show that flames under normal gravity are brighter than in microgravity. The longer residence times for microgravity flames result in increased radiative loss, which leads to local extinction and low temperature at the flame tip. Flame radiation fractions for microgravity flames are larger than those in normal gravity for C2H 4 and CH 4. The velocity of coflowing air has a much more pronounced effect on radiation from microgravity flames compared to those in normal gravity. The radiation fractions from ethylene‐fueled flames in microgravity are large, leading to local extinction at the flame tip. We also analyzed the flame radiation fraction.  相似文献   

19.
基于烟黑辐射特性,利用烟黑单色辐射强度图像信息,采用CT算法同时重建含烟黑火焰温度与烟黑浓度分布,对蜡烛火焰与煤油火焰的温度与烟黑体积分数进行了测量.测量结果表明在两种火焰中,较大烟黑浓度都位于较高火焰温度之内,即在火焰外环的反应区内.另外,由于煤油火焰的燃料量大,因而会增大火焰中的烟黑浓度,辐射损失增大,降低火焰温度.这与有关实验结论是一致的.  相似文献   

20.
《Combustion and Flame》2001,124(1-2):311-325
We have investigated lifted triple flames and addressed issues related to flame stabilization. The stabilization of nonpremixed flames has been argued to result due to the existence of a premixing zone of sufficient reactivity, which causes propagating premixed reaction zones to anchor a nonpremixed zone. We first validate our simulations with detailed measurements in more tractable methane–air burner-stabilized flames. Thereafter, we simulate lifted flames without significantly modifying the boundary conditions used for investigating the burner-stabilized flames. The similarities and differences between the structures of lifted and burner-stabilized flames are elucidated, and the role of the laminar flame speed in the stabilization of lifted triple flames is characterized. The reaction zone topography in the flame is as follows. The flame consists of an outer lean premixed reaction zone, an inner rich premixed reaction zone, and a nonpremixed reaction zone where partially oxidized fuel and oxidizer (from the rich and lean premixed reaction zones, respectively) mix in stoichiometric proportion and thereafter burn. The region with the highest temperatures lies between the inner premixed and the central nonpremixed reaction zone. The heat released in the reaction zones is transported both upstream (by diffusion) and downstream to other portions of the flame. Measured and simulated species concentration profiles of reactant (O2, CH4) consumption, intermediate (CO, H2) formation followed by intermediate consumption and product (CO2, H2O) formation are presented. A lifted flame is simulated by conceptualizing a splitter wall of infinitesimal thickness. The flame liftoff increases the height of the inner premixed reaction zone due to the modification of the upstream flow field. However, both the lifted and burner-stabilized flames exhibit remarkable similarity with respect to the shapes and separation distances regarding the three reaction zones. The heat-release distribution and the scalar profiles are also virtually identical for the lifted and burner-stabilized flames in mixture fraction space and attest to the similitude between the burner-stabilized and lifted flames. In the lifted flame, the velocity field diverges upstream of the flame, causing the velocity to reach a minimum value at the triple point. The streamwise velocity at the triple point is ≈0.45 m s−1 (in accord with the propagation speed for stoichiometric methane–air flame), whereas the velocity upstream of the triple point equals 0.7 m s−1, which is in excess of the unstretched flame propagation speed. This is in agreement with measurements reported by other investigators. In future work we will address the behavior of this velocity as the equivalence ratio, the inlet velocity profile, and inlet mixture fraction are changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号